17. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時,求弦長|AB|的取值范圍.

查看答案和解析>>

Ⅰ選擇題

1.C   2. B   3. B   4.B   5.A   6.C   7.A   8.C   9.D   10.A   11.C   12.C

Ⅱ非選擇題

13.    14.    15.  16. (2) (3)

17.  解:   (4分)

      (1)增區(qū)間  ,  減區(qū)間   (8分)

      (2)   (12分)

18.解:因骰子是均勻的,所以骰子各面朝下的可能性相等,設(shè)其中一枚骰子朝下的面上的數(shù)字為,另一枚骰子朝下的面上的數(shù)字為y,則   的取值如下表:

 

x+y    y

x          

1

2

3

5

1

2

3

4

6

2

3

4

5

7

3

4

5

6

8

5

6

7

8

10

從表中可得:

⑴ 

………………8分

的所有可能取值為2,3,4,5,6,7,8,10

的分布列為:

2

3

4

5

6

7

8

10

P

E=2×+3×+4×+5×+6×+7×+8×+10×=5.5………12分

 

19.解:(1)在△CBD中作CO⊥BD.  易證:

CO⊥平面PBD       ∴∠CPO即為所求,

    (4分)

(2)在△PBC中作EF∥BC交PC于F,

又AD∥BC   ∴ AD∥EF   ∴ DF⊥PC

又DP=DC    ∴ F為PC的中點   ∴E為PB的中點,  ∴   (8分)

(3)由(2)得:四邊形ADFE為直角梯形,且 EF=1,DF=,AD=2

   ∴

   ∴ 所求部分體積     (12分)

20. 解:(1)

       令

       ∴ 增區(qū)間為(0, 1)    減區(qū)間為     (4分)

(2)函數(shù)圖象如圖所示:

  ∴ 解為:

  ① a<0,   0個;

   ② a=0,  a>,    1個;

   ③a=,  2個 ;   ④ 0<a<,    3個.     (8分)

(3)

  (12分)

21.解:(1)由

根據(jù)待定系數(shù)法,可得.得,

故:   (4分)

(2)若為奇數(shù),以下證:

由于,即.

①     當(dāng)為偶數(shù)時

②     當(dāng)為奇數(shù)時

                   =

                    

成立.  。12分)

22. 解:⑴

    設(shè)M()且

 化簡:  (1分)

  ∴    MN為∠F1 MF2的平分線

  ∴

  ∴

     

   (6分)

  ⑵ 代入拋物線

 (9分)

   ∴

①當(dāng)時,不等式成立

②當(dāng)

的取值范圍為:    (14分)

 


同步練習(xí)冊答案