題目列表(包括答案和解析)
橢圓的左、右焦點(diǎn)分別為F1、F2,過F1的直線l與橢圓交于A、B兩點(diǎn).
(1)如果點(diǎn)A在圓x2+y2=c2(c為橢圓的半焦距)上,且|F1A|=c,求橢圓的離心率;
(2)若函數(shù)的圖象,無論m為何值時恒過定點(diǎn)(b,a),求的取值范圍.
(14分)橢圓的左、右焦點(diǎn)分別為F1、F2,過F1的直線l與橢圓交于A、B兩點(diǎn).
(1)如果點(diǎn)A在圓(c為橢圓的半焦距)上,且|F1A|=c,求橢圓的離心率;
(2)若函數(shù)的圖象,無論m為何值時恒過定點(diǎn)(b,a),
求的取值范圍。
(本小題滿分12分)橢圓的左、右焦點(diǎn)分別為F1、F2,過F1的直線l與橢圓交于A、B兩點(diǎn). 1)若點(diǎn)A在圓(c為橢圓的半焦距)上,且|F1A|=c,求橢圓的離心率;2)若函數(shù)的圖象,無論m為何值時恒過定點(diǎn)(b,a),求的取值范圍。
(本小題滿分13分)橢圓的左、右焦點(diǎn)分別為F1、F2,過F1的直線l與橢圓交于A、B兩點(diǎn). (Ⅰ)如果點(diǎn)A在圓(c為橢圓的半焦距)上,且|F1A|=c,求橢圓的離心率;(Ⅱ)若函數(shù)的圖象,無論m為何值時恒過定點(diǎn)(b,a),求的取值范圍.
一、選擇題 A D B A C B A D A C B B
二、填空題
13.. 14. 15. .16.①②③④
三、解答題
17.(1) =
=
==
==.
∴的最小正周期.
(2) ∵, ∴.
∴當(dāng),即=時,有最大值;
當(dāng),即=時,有最小值-1.
18. (1)連結(jié),則是的中點(diǎn),
在△中,,
且平面,平面,
∴∥平面
(2) 因?yàn)?sub>平面,平面,
,
又⊥,所以,⊥平面,
∴四邊形 是矩形,
且側(cè)面⊥平面
取的中點(diǎn),,
且平面.
所以,多面體的體積
19.解:(Ⅰ)依題意,甲答對試題數(shù)的概率分布如下:
0
1
2
3
甲答對試題數(shù)的數(shù)學(xué)期望:
(Ⅱ)設(shè)甲、乙兩人考試合格的事件分別為
則
甲、乙兩人考試均不合格的概率為:
∴甲、乙兩人至少一個合格的概率為
20.(1),
∴ ,于是,
∴為首相和公差均為1的等差數(shù)列.
由 , 得,
∴.
(2),
,
兩式相減,得,
解出
21. 因
而函數(shù)在處取得極值2
所以
所以 為所求
(2)由(1)知
可知,的單調(diào)增區(qū)間是
所以,
所以當(dāng)時,函數(shù)在區(qū)間上單調(diào)遞增
(3)由條件知,過的圖形上一點(diǎn)的切線的斜率為:
令,則,
此時 ,
根據(jù)二次函數(shù)的圖象性質(zhì)知:
當(dāng)時,
當(dāng)時,
所以,直線的斜率的取值范圍是
22. 解:(1)∵點(diǎn)A在圓,
由橢圓的定義知:|AF1|+|AF2|=2a,
(2)∵函數(shù)
∴
點(diǎn)F1(-1,0),F2(1,0),
①若,
∴
②若AB與x軸不垂直,設(shè)直線AB的斜率為k,則AB的方程為y=k(x+1)
由…………(*)
方程(*)有兩個不同的實(shí)根.
設(shè)點(diǎn)A(x1,y1),B(x2,y2),則x1,x2是方程(*)的兩個根
由①②知
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com