為.定義函數(shù).則函數(shù)g(x)最大值為( )A.0 B.2 C.1 D.4 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)函數(shù)f(x)的圖象是如圖所示的折線段OAB,點A坐標(biāo)為(1,2),點B坐標(biāo)為(3,0).定義函數(shù)g(x)=f(x)•(x-1).則函數(shù)g(x)最大值為( 。
A、0B、2C、1D、4

查看答案和解析>>

定義:若函數(shù)f(x)對于其定義域內(nèi)的某一數(shù)x0,有f(x0)=x0,則稱x0是f(x)的一個不動點.已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的不動點;
(2)若對任意的實數(shù)b,函數(shù)f(x)恒有兩個不動點,求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上兩個點A、B的橫坐標(biāo)是函數(shù)f(x)的不動點,且A、B的中點C在函數(shù)g(x)=-x+
a
5a2-4a+1
的圖象上,求b的最小值.
(參考公式:A(x1,y1),B(x2,y2)的中點坐標(biāo)為(
x1+x2
2
,
y1+y2
2
)

查看答案和解析>>

函數(shù)y=f(x)為定義在R上的減函數(shù),函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,x,y滿足不等式f(x2-2x)+f(2y-y2)≤0,M(1,2),N(x,y),O為坐標(biāo)原點,則當(dāng)1≤x≤4時,
OM
ON
的取值范圍為( 。

查看答案和解析>>

函數(shù)f(x)的圖象是如圖所示的折線段OAB,點A坐標(biāo)為(1,2),點B坐標(biāo)為(3,0),定義函數(shù)g(x)=f(x)•x,則函數(shù)g(x)最大值為
9
4
9
4

查看答案和解析>>

函數(shù)f(x)的圖象是如圖所示的折線段OAB,點A坐標(biāo)為(1,2),點B坐標(biāo)為(3,0).定義函數(shù)g(x)=f(x)•(x-1).則函數(shù)g(x)最大值為( )

A.0
B.2
C.1
D.4

查看答案和解析>>

一、選擇題   A D B A C      B A D A C  B  B

二、填空題

13..    14.   15. .16.①②③④

三、解答題

17.(1) =

=

==

==.

的最小正周期

(2) ∵,  ∴.

∴當(dāng),即=時,有最大值;

當(dāng),即=時,有最小值-1.

 

18. (1)連結(jié),則的中點,

在△中,,

平面,平面,

∥平面 

   (2) 因為平面,平面,

,

,所以,⊥平面,

∴四邊形 是矩形,

且側(cè)面⊥平面

的中點,,

平面.

所以,多面體的體積

19.解:(Ⅰ)依題意,甲答對試題數(shù)的概率分布如下:

0

1

2

3

 

 

 

甲答對試題數(shù)的數(shù)學(xué)期望:

 

(Ⅱ)設(shè)甲、乙兩人考試合格的事件分別為

        

甲、乙兩人考試均不合格的概率為:

∴甲、乙兩人至少一個合格的概率為

20.(1),

,于是,

為首相和公差均為1的等差數(shù)列.

, 得, 

(2),

,

兩式相減,得,

解出

21. 因                  

而函數(shù)處取得極值2             

所以                     

所以   為所求                       

文本框:  文本框:  (2)由(1)知

可知,的單調(diào)增區(qū)間是

所以,       

所以當(dāng)時,函數(shù)在區(qū)間上單調(diào)遞增  

(3)由條件知,過的圖形上一點的切線的斜率為:

 

,則,  

此時 ,

根據(jù)二次函數(shù)的圖象性質(zhì)知:

當(dāng)時,                

當(dāng)時,

所以,直線的斜率的取值范圍是

22. 解:(1)∵點A在圓

      

       由橢圓的定義知:|AF1|+|AF2|=2a,

        

   (2)∵函數(shù)

  

           點F1(-1,0),F2(1,0), 

           ①若,

       ∴

       ②若ABx軸不垂直,設(shè)直線AB的斜率為k,則AB的方程為y=kx+1)

       由…………(*)

       方程(*)有兩個不同的實根.

       設(shè)點Ax1,y1),Bx2,y2),則x1,x2是方程(*)的兩個根

        

      

      

        

      

       由①②知


同步練習(xí)冊答案