題目列表(包括答案和解析)
已知數(shù)列是首項(xiàng)為的等比數(shù)列,且滿足.
(1) 求常數(shù)的值和數(shù)列的通項(xiàng)公式;
(2) 若抽去數(shù)列中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、……、第項(xiàng)、……,余下的項(xiàng)按原來(lái)的順序組成一個(gè)新的數(shù)列,試寫(xiě)出數(shù)列的通項(xiàng)公式;
(3) 在(2)的條件下,設(shè)數(shù)列的前項(xiàng)和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.
【解析】第一問(wèn)中解:由得,,
又因?yàn)榇嬖诔?shù)p使得數(shù)列為等比數(shù)列,
則即,所以p=1
故數(shù)列為首項(xiàng)是2,公比為2的等比數(shù)列,即.
此時(shí)也滿足,則所求常數(shù)的值為1且
第二問(wèn)中,解:由等比數(shù)列的性質(zhì)得:
(i)當(dāng)時(shí),;
(ii) 當(dāng)時(shí),,
所以
第三問(wèn)假設(shè)存在正整數(shù)n滿足條件,則,
則(i)當(dāng)時(shí),
,
已知正項(xiàng)數(shù)列的前n項(xiàng)和滿足:,
(1)求數(shù)列的通項(xiàng)和前n項(xiàng)和;
(2)求數(shù)列的前n項(xiàng)和;
(3)證明:不等式 對(duì)任意的,都成立.
【解析】第一問(wèn)中,由于所以
兩式作差,然后得到
從而得到結(jié)論
第二問(wèn)中,利用裂項(xiàng)求和的思想得到結(jié)論。
第三問(wèn)中,
又
結(jié)合放縮法得到。
解:(1)∵ ∴
∴
∴ ∴ ………2分
又∵正項(xiàng)數(shù)列,∴ ∴
又n=1時(shí),
∴ ∴數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列……………3分
∴ …………………4分
∴ …………………5分
(2) …………………6分
∴
…………………9分
(3)
…………………12分
又
,
∴不等式 對(duì)任意的,都成立.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com