19.解:(I)依題意.可設(shè)直線AB的方程為 y=k(x-1)+2. 查看更多

 

題目列表(包括答案和解析)

過(guò)拋物線的對(duì)稱軸上的定點(diǎn),作直線與拋物線相交于兩點(diǎn).

(I)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;

(II)若點(diǎn)是定直線上的任一點(diǎn),試探索三條直線的斜率之間的關(guān)系,并給出證明.

【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的能力.

(1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達(dá)定理得 

 (2)中:因?yàn)槿龡l直線AN,MN,BN的斜率成等差數(shù)列,下證之

設(shè)點(diǎn)N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=

  

KAN+KBN=+

本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的能力.

 

查看答案和解析>>

已知平面直角坐標(biāo)系中的點(diǎn)A(-1,0),B(3,2),求直線AB的方程的一個(gè)算法如下,請(qǐng)將其補(bǔ)充完整。
第一步,根據(jù)題意設(shè)直線AB的方程為y=kx+b
第二步,將A(-1,0),B(3,2)代入第一步所設(shè)的方程,得到-k+b=0①;3k+b=2②,
第三步,(    )
第四步,把第三步所得結(jié)果代入第一步所設(shè)的方程,得到
第五步,將第四步所得結(jié)果整理,得到方程x-2y+1=0。

查看答案和解析>>

已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過(guò)點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問(wèn)中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問(wèn)中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

已知實(shí)數(shù)x,y滿足方程x2+y2+4y-96=0,有下列結(jié)論:
①x+y的最小值為-10
2
-2
;
②對(duì)任意實(shí)數(shù)m,方程(m-2)x-(2m+1)y+16m+8=0(m∈R)與題中方程必有兩組不同的實(shí)數(shù)解;
③過(guò)點(diǎn)M(0,18)向題中方程所表示曲線作切線,切點(diǎn)分別為A,B,則直線AB的方程為y=3;
④若x,y∈N*,則xy的值為36或32.
以上結(jié)論正確的有
 
(用序號(hào)表示)

查看答案和解析>>

如圖,過(guò)拋物線x2=4y的對(duì)稱軸上任一點(diǎn)P(0,m)(m>0)作直線與拋物線交于A(x1,y1),B(x2,y2)兩點(diǎn).
(I)若
AP
PB
(λ∈R)
,證明:λ=-
x1
x2

(II)在(I)條件下,若點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)對(duì)稱點(diǎn),證明:
QP
⊥(
QA
QB
)
;
(III)設(shè)直線AB的方程是x-2y+12=0,過(guò)A,B兩點(diǎn)的圓C與拋物線在點(diǎn)A處有共同的切線,求圓C的方程.

查看答案和解析>>


同步練習(xí)冊(cè)答案