19.設A.B是雙曲線上的兩點.點N(1.2)是線段AB的中點. (I)求直線AB的方程 (II)如果線段AB的垂直平分線與雙曲線相交于C.D兩點.那么A.B.C.D四點是否共圓?為什么? 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

        如圖,A、B分別是橢圓的公共左右頂點,P、Q分別位于橢圓和雙曲線上且不同于A、B的兩點,設直線AP、BP、AQ、BQ的斜率分別為k1、k2、k3、k4且k1+k2­+k3+k4=0。

   (1)求證:O、P、Q三點共線;(O為坐標原點)

   (2)設F1、F2分別是橢圓和雙曲線的右焦點,已知PF1//QF2,求的值。

 

 

查看答案和解析>>

(本小題滿分12分)
如圖,A、B分別是橢圓的公共左右頂點,P、Q分別位于橢圓和雙曲線上且不同于A、B的兩點,設直線AP、BP、AQ、BQ的斜率分別為k1、k2、k3、k4且k1+k2­+k3+k4=0。
(1)求證:O、P、Q三點共線;(O為坐標原點)
(2)設F1、F2分別是橢圓和雙曲線的右焦點,已知PF1//QF2,求的值。

查看答案和解析>>

(本小題滿分12分)

       已知橢圓與雙曲線有共同的焦點F1、F2,設它們在第一象限的交點為P,且

   (1)求橢圓的方程;

   (2)已知N(0,-1),對于(1)中的橢圓,是否存在斜率為的直線,與橢圓交于不同的兩點A、B,點Q滿足?若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

(本小題滿分12分)

       已知橢圓與雙曲線有共同的焦點F1、F2,設它們在第一象限的交點為P,且

   (1)求橢圓的方程;

   (2)已知N(0,-1),對于(1)中的橢圓,是否存在斜率為的直線,與橢圓交于不同的兩點A、B,點Q滿足?若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

.(本小題滿分12分)

    已知橢圓與雙曲線有共同的焦點F1、F2,設它們在第一象限的交點為P,且

   (1)求橢圓的方程;

   (2)已知N(0,-1),對于(1)中的橢圓,是否存在斜率為的直線,與橢圓交于不同的兩點A、B,點Q滿足?若存在,求出的取值范圍;若不存在,說明理由。

 

 

查看答案和解析>>


同步練習冊答案