21. 查看更多

 

題目列表(包括答案和解析)

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

(本題滿分12分)     已知函數(shù).

(Ⅰ) 求f 1(x);

(Ⅱ) 若數(shù)列{an}的首項為a1=1,(nÎN+),求{an}的通項公式an;

(Ⅲ)  設(shè)bn=(32n-8),求數(shù)列{bn}的前項和Tn

查看答案和解析>>

(本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標原點到切線的距離為,若x=時,y=f(x)有極值.

(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m    

(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

(本題滿分12分) 已知數(shù)列{an}滿足

   (Ⅰ)求數(shù)列的前三項:a1,a2,a3;

   (Ⅱ)求證:數(shù)列{}為等差數(shù)列. w.w.w.k.s.5.u.c.o.m    

(Ⅲ)求數(shù)列{an}的前n項和Sn.

查看答案和解析>>

(本題滿分12分)   已知函數(shù)

   (Ⅰ)當的 單調(diào)區(qū)間;

   (Ⅱ)當的取值范圍。

查看答案和解析>>

 

一、選擇題

1―5 CADBA    6―10 CBABD    11―12 CC

二、填空題

13.(理)(文)(―1,1)    14.    15.(理)18(文)(1,0)

16.①③

三、解答題

17.解:(1)由題意得   ………………2分

   

   (2)由可知A、B都是銳角,   …………7分

   

    這時三角形為有一頂角為120°的等腰三角形   …………12分

18.(理)解:(1)ξ的所有可能的取值為0,1,2,3。  ………………2分

   

   (2)   ………………12分

   (文)解:(1);  ………………6分

   (2)因為

      …………10分

    所以   …………12分

19.解:(1),   ………………1分

    依題意知,   ………………3分

   (2)令   …………4分

     …………5分

    所以,…………7分

   (3)由上可知

    ①當恒成立,

    必須且只須, …………8分

   

     則   ………………9分

    ②當……10分

    要使當

    綜上所述,t的取值范圍是   ………………12分

20.解法一:(1)取BB1的中點D,連CD、AD,則∠ACD為所求!1分

   

   (2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,連EE1

則AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。

因為A1B1//AB,所以A1B1//平面PAB。則只需求點E1到平面PAB的距離。

作E1H⊥EP于H,則E1H⊥平面PAB,則E1H即為所求距離。  …………6分

求得 …………8分

方法二:設(shè)B1到平面PAB的距離為h,則由

  ………………8分

   (3)設(shè)平面PAB與平面PA1B1的交線為l,由(2)知,A1B1//平面PAB,

則A1B1//l,因為AB⊥面CC1E1E,則l⊥面CC1E1E,

所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分

要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。  ………………10分

在矩形CEE1C1中,

解得

  • 解法二:(1)取B1C1的中點O,則A1O⊥B1C1,

    以O(shè)為坐標原點,建立空間直角坐標系如圖,

       (2)是平面PAB的一個法向量,

       ………………5分

       ………………6分

      ………………8分

       (3)設(shè)P點坐標為(),則

    設(shè)是平面PAB的一個法向量,與(2)同理有

        令

        同理可求得平面PA1B1的一個法向量   ………………10分

        要使平面PAB⊥平面PA1B1,只需

          ………………11分

        解得: …………12分

    21.(理)解:(1)由條件得

       

       (2)①設(shè)直線m ……5分

       

        ②不妨設(shè)M,N的坐標分別為

    …………………8分

    因直線m的斜率不為零,故

       (文)解:(1)設(shè)  …………2分

       

        故所求雙曲線方程為:

       (2)設(shè),

       

        由焦點半徑,  ………………8分

       

    22.(1)證明:

        所以在[0,1]上為增函數(shù),   ………………3分

       (2)解:由

       

       (3)解:由(1)與(2)得 …………9分

        設(shè)存在正整數(shù)k,使得對于任意的正整數(shù)n,都有成立,

           ………………10分

       

        ,   ………………11分

        當,   ………………12分

        當    ………………13分

        所在存在正整數(shù)

        都有成立.   ………………14分

     

     

     

     


    同步練習冊答案