18. (理)袋中有編號(hào)為1.2.3.4的四個(gè)小球.每次從袋中取出一個(gè)球.然后加入一個(gè)新的沒有編號(hào)的球.共取球四次.用ξ表示經(jīng)過四次取球后袋中剩余的帶有編號(hào)的球的個(gè)數(shù).試求: (1)ξ的分布列, (2)ξ的數(shù)學(xué)期望Eξ. (文)袋中有編號(hào)為1.2.3.4的四個(gè)小球.每次從袋中取出一個(gè)球.然后加入一個(gè)新的沒有編號(hào)的球.共取球四次.試求: (1)經(jīng)過四次取球后袋中沒有帶有編號(hào)的球的概率, (2)經(jīng)過四次取球后袋中至少有2個(gè)帶有編號(hào)的球的概率. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

(理)袋中有同樣的球5個(gè),其中3個(gè)紅色,2個(gè)黃色,現(xiàn)從中隨機(jī)且不放回地摸球,每次摸1個(gè),當(dāng)兩種顏色的球都被摸到時(shí),即停止摸球,記隨機(jī)變量ξ為此時(shí)已摸球的次數(shù),求:

(1)隨機(jī)變量ξ的概率分布; (9分) 

(2)隨機(jī)變量ξ的數(shù)學(xué)期望與方差. (3分)

查看答案和解析>>

(本小題滿分12分)口袋里裝有大小相同的卡片八張,其中三張標(biāo)有數(shù)字1,三張標(biāo)有數(shù)字2,二張標(biāo)有數(shù)字3,第一次從口袋里任意抽取一張,放回口袋后第二次再任意抽取一張,記第一次與第二次取到卡片上數(shù)字之和為ξ.(1)ξ為何值時(shí),其發(fā)生的概率最大?說明理由.(2)求隨機(jī)變量ξ的期望Eξ.

查看答案和解析>>

(本小題滿分12分)袋子中有質(zhì)地、大小完全相同的4個(gè)球,編號(hào)分別為1,2,3,4.甲、乙兩人玩一種游戲:甲先摸出一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,記下編號(hào),若兩個(gè)編號(hào)的和為奇數(shù)算甲贏,否則算乙贏.記基本事件為,其中分別為甲、乙摸到的球的編號(hào)。

(1)列舉出所有的基本事件,并求甲贏且編號(hào)的和為5的事件發(fā)生的概率;

(2)比較甲勝的概率與乙勝的概率,并說明這種游戲規(guī)則是否公平。(無詳細(xì)解答過程,不給分)

(3)   如果請(qǐng)你猜這兩球的號(hào)碼之和,猜中有獎(jiǎng).猜什么數(shù)獲獎(jiǎng)的可能性大?說明理由.

 

查看答案和解析>>

(本小題滿分12分)

口袋里裝有大小相同的卡片八張,其中三張標(biāo)有數(shù)字1,三張標(biāo)有數(shù)學(xué)2,二張標(biāo)有數(shù)字3,第一次從口袋里任里任意抽取一張,放回口袋里后第二次再任意抽取一張,記第一次與第二次取到卡片上數(shù)字這和為

   (Ⅰ)為何值時(shí),其發(fā)生的概率最大?說明理由;

   (Ⅱ)求隨機(jī)變量的期望

查看答案和解析>>

(本小題滿分12分)袋子中有質(zhì)地、大小完全相同的4個(gè)球,編號(hào)分別為1,2,3,4.甲、乙兩人玩一種游戲:甲先摸出一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,記下編號(hào),若兩個(gè)編號(hào)的和為奇數(shù)算甲贏,否則算乙贏.記基本事件為,其中分別為甲、乙摸到的球的編號(hào)。
(1)列舉出所有的基本事件,并求甲贏且編號(hào)的和為5的事件發(fā)生的概率;
(2)比較甲勝的概率與乙勝的概率,并說明這種游戲規(guī)則是否公平。(無詳細(xì)解答過程,不給分)
(3)  如果請(qǐng)你猜這兩球的號(hào)碼之和,猜中有獎(jiǎng).猜什么數(shù)獲獎(jiǎng)的可能性大?說明理由.

查看答案和解析>>

 

一、選擇題

1―5 CADBA    6―10 CBABD    11―12 CC

二、填空題

13.(理)(文)(―1,1)    14.    15.(理)18(文)(1,0)

16.①③

三、解答題

17.解:(1)由題意得   ………………2分

   

   (2)由可知A、B都是銳角,   …………7分

   

    這時(shí)三角形為有一頂角為120°的等腰三角形   …………12分

18.(理)解:(1)ξ的所有可能的取值為0,1,2,3。  ………………2分

   

   (2)   ………………12分

   (文)解:(1);  ………………6分

   (2)因?yàn)?sub>

      …………10分

    所以   …………12分

19.解:(1),   ………………1分

    依題意知,   ………………3分

   (2)令   …………4分

     …………5分

    所以,…………7分

   (3)由上可知

    ①當(dāng)恒成立,

    必須且只須, …………8分

   

     則   ………………9分

    ②當(dāng)……10分

    要使當(dāng)

    綜上所述,t的取值范圍是   ………………12分

20.解法一:(1)取BB1的中點(diǎn)D,連CD、AD,則∠ACD為所求!1分

   

   (2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,連EE1,

則AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。

因?yàn)锳1B1//AB,所以A1B1//平面PAB。則只需求點(diǎn)E1到平面PAB的距離。

作E1H⊥EP于H,則E1H⊥平面PAB,則E1H即為所求距離。  …………6分

求得 …………8分

方法二:設(shè)B1到平面PAB的距離為h,則由

  ………………8分

   (3)設(shè)平面PAB與平面PA1B1的交線為l,由(2)知,A1B1//平面PAB,

則A1B1//l,因?yàn)锳B⊥面CC1E1E,則l⊥面CC1E1E,

所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分

要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。  ………………10分

在矩形CEE1C1中,

解得

      1. <menuitem id="gwok5"><fieldset id="gwok5"><th id="gwok5"></th></fieldset></menuitem>

        解法二:(1)取B1C1的中點(diǎn)O,則A1O⊥B1C1,

        以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如圖,

           (2)是平面PAB的一個(gè)法向量,

           ………………5分

           ………………6分

          ………………8分

           (3)設(shè)P點(diǎn)坐標(biāo)為(),則

        設(shè)是平面PAB的一個(gè)法向量,與(2)同理有

            令

            同理可求得平面PA1B1的一個(gè)法向量   ………………10分

            要使平面PAB⊥平面PA1B1,只需

              ………………11分

            解得: …………12分

        21.(理)解:(1)由條件得

           

           (2)①設(shè)直線m ……5分

           

            ②不妨設(shè)M,N的坐標(biāo)分別為

        …………………8分

        因直線m的斜率不為零,故

           (文)解:(1)設(shè)  …………2分

           

            故所求雙曲線方程為:

           (2)設(shè),

           

            由焦點(diǎn)半徑,  ………………8分

           

        22.(1)證明:

            所以在[0,1]上為增函數(shù),   ………………3分

           (2)解:由

           

           (3)解:由(1)與(2)得 …………9分

            設(shè)存在正整數(shù)k,使得對(duì)于任意的正整數(shù)n,都有成立,

               ………………10分

           

            ,   ………………11分

            當(dāng),   ………………12分

            當(dāng)    ………………13分

            所在存在正整數(shù)

            都有成立.   ………………14分

         

         

         

         


        同步練習(xí)冊(cè)答案