8.(理)若函數(shù)上不是單調函數(shù).則實數(shù)k的取值范圍 查看更多

 

題目列表(包括答案和解析)

若函數(shù)f(x)同時滿足以下兩個條件:①f(x)在其定義域上是單調函數(shù);②在f(x)的定義域內存在區(qū)間[a,b],使得f(x)在[a,b]上的值域是[a,b].則稱函數(shù)f(x)為“自強”函數(shù).
(1)判斷函數(shù)f(x)=2x-1是否為“自強”函數(shù)?若是,則求出a,b若不是,說明理由;
(2)若函數(shù)f(x)=
2x-1
+t是“自強”函數(shù),求實數(shù)t的取值范圍.

查看答案和解析>>

函數(shù)數(shù)學公式,a>0,f'(1)=0.
(1)①試用含有a的式子表示b;②求f(x)的單調區(qū)間;
(2)對于函數(shù)圖象上的不同兩點A(x1,y1),B(x2,y2),如果在函數(shù)圖象上存在點P(x0,y0)(其中x0在x1與x2之間),使得點P處的切線l∥AB,則稱AB存在“伴隨切線”,當數(shù)學公式時,又稱AB存在“中值伴隨切線”.試問:在函數(shù)f(x)的圖象上是否存在兩點A、B,使得AB存在“中值伴隨切線”?若存在,求出A、B的坐標;若不存在,說明理由.

查看答案和解析>>

若函數(shù)為定義域上單調函數(shù),且存在區(qū)間(其中),使得當時,的取值范圍恰為,則稱函數(shù)上的正函數(shù),區(qū)間叫做等域區(qū)間.

 (1)已知上的正函數(shù),求的等域區(qū)間;

 (2)試探究是否存在實數(shù),使得函數(shù)上的正函數(shù)?若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

函數(shù),a>0,f'(1)=0.
(1)①試用含有a的式子表示b;②求f(x)的單調區(qū)間;
(2)對于函數(shù)圖象上的不同兩點A(x1,y1),B(x2,y2),如果在函數(shù)圖象上存在點P(x,y)(其中x在x1與x2之間),使得點P處的切線l∥AB,則稱AB存在“伴隨切線”,當時,又稱AB存在“中值伴隨切線”.試問:在函數(shù)f(x)的圖象上是否存在兩點A、B,使得AB存在“中值伴隨切線”?若存在,求出A、B的坐標;若不存在,說明理由.

查看答案和解析>>

定理:若函數(shù)在閉區(qū)間[m,n]上是連續(xù)的單調函數(shù),且,則存在唯一一個。已知

   (1)若是減函數(shù),求a的取值范圍。

   (2)是否存在同時成立,若存在,指出c、d之間的等式關系,若不存在,請說明理由。

查看答案和解析>>

 

一、選擇題

1―5 CADBA    6―10 CBABD    11―12 CC

二、填空題

13.(理)(文)(―1,1)    14.    15.(理)18(文)(1,0)

16.①③

三、解答題

17.解:(1)由題意得   ………………2分

   

   (2)由可知A、B都是銳角,   …………7分

   

    這時三角形為有一頂角為120°的等腰三角形   …………12分

18.(理)解:(1)ξ的所有可能的取值為0,1,2,3。  ………………2分

   

   (2)   ………………12分

   (文)解:(1);  ………………6分

   (2)因為

      …………10分

    所以   …………12分

19.解:(1),   ………………1分

    依題意知,   ………………3分

   (2)令   …………4分

     …………5分

    所以,…………7分

   (3)由上可知

    ①當恒成立,

    必須且只須, …………8分

    ,

     則   ………………9分

    ②當……10分

    要使當

    綜上所述,t的取值范圍是   ………………12分

20.解法一:(1)取BB1的中點D,連CD、AD,則∠ACD為所求!1分

   

   (2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,連EE1,

則AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。

因為A1B1//AB,所以A1B1//平面PAB。則只需求點E1到平面PAB的距離。

作E1H⊥EP于H,則E1H⊥平面PAB,則E1H即為所求距離。  …………6分

求得 …………8分

方法二:設B1到平面PAB的距離為h,則由

  ………………8分

   (3)設平面PAB與平面PA1B1的交線為l,由(2)知,A1B1//平面PAB,

則A1B1//l,因為AB⊥面CC1E1E,則l⊥面CC1E1E,

所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分

要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。  ………………10分

在矩形CEE1C1中,

解得

      解法二:(1)取B1C1的中點O,則A1O⊥B1C1

      以O為坐標原點,建立空間直角坐標系如圖,

         (2)是平面PAB的一個法向量,

         ………………5分

         ………………6分

        ………………8分

         (3)設P點坐標為(),則

      是平面PAB的一個法向量,與(2)同理有

          令

          同理可求得平面PA1B1的一個法向量   ………………10分

          要使平面PAB⊥平面PA1B1,只需

            ………………11分

          解得: …………12分

      21.(理)解:(1)由條件得

         

         (2)①設直線m ……5分

         

          ②不妨設M,N的坐標分別為

      …………………8分

      因直線m的斜率不為零,故

         (文)解:(1)設  …………2分

         

          故所求雙曲線方程為:

         (2)設

         

          由焦點半徑,  ………………8分

         

      22.(1)證明:

          所以在[0,1]上為增函數(shù),   ………………3分

         (2)解:由

         

         (3)解:由(1)與(2)得 …………9分

          設存在正整數(shù)k,使得對于任意的正整數(shù)n,都有成立,

             ………………10分

         

          ,   ………………11分

          當,   ………………12分

          當    ………………13分

          所在存在正整數(shù)

          都有成立.   ………………14分

       

       

       

       


      同步練習冊答案