(Ⅰ)求橢圓的方程和的外接圓的方程, 查看更多

 

題目列表(包括答案和解析)

設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的上頂點為A,橢圓C上兩點P,Q在x軸上的射影分別為左焦點F1和右焦點F2,直線PQ的斜率為
3
2
,過點A且與AF1垂直的直線與x軸交于點B,△AF1B的外接圓為圓M.
(1)求橢圓的離心率;
(2)直線l:3x+4y+
1
4
a2=0
與圓M相交于E,F(xiàn)兩點,且
ME
MF
=-
1
2
a2
,求橢圓方程;
(3)設點N(0,3)在橢圓C內部,若橢圓C上的點到點N的最遠距離不大于6
2
,求橢圓C的短軸長的取值范圍.

查看答案和解析>>

設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的上頂點為A,橢圓C上兩點P,Q在x軸上的射影分別為左焦點F1和右焦點F2,直線PQ的斜率為
3
2
,過點A且與AF1垂直的直線與x軸交于點B,△AF1B的外接圓為圓M.
(1)求橢圓的離心率;
(2)直線l:3x+4y+
1
4
a2=0
與圓M相交于E,F(xiàn)兩點,且
ME
MF
=-
1
2
a2
,求橢圓方程;
(3)設點N(0,3)在橢圓C內部,若橢圓C上的點到點N的最遠距離不大于6
2
,求橢圓C的短軸長的取值范圍.

查看答案和解析>>

精英家教網(wǎng)已知橢圓E的中心在原點,焦點在x軸上,離心率為
3
2
,且過拋物線C:x2=4y的焦點F.
(I)求橢圓E的方程;
(II)過坐標平面上的點F'作拋物線c的兩條切線l1和l2,它們分別交拋物線C的另一條切線l3于A,B兩點.
(i)若點F′恰好是點F關于-軸的對稱點,且l3與拋物線c的切點恰好為拋物線的頂點(如圖),求證:△ABF′的外接圓過點F;
(ii)試探究:若改變點F′的位置,或切線l3的位置,或拋物線C的開口大小,(i)中的結論是否仍然成立?由此給出一個使(i)中的結論成立的命題,并加以證明.

查看答案和解析>>

已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)的上下焦點分別為F1,F(xiàn)1,短軸兩個端點為P,P1,且四邊形F1PF2P1是邊長為2的正方形.
(1)求橢圓方程;
(2)設△ABC,AC=2
3
,B為橢圓
y2
a2
+
x2
b2
=1(a>b>0)在x軸上方的頂點,當AC在直線y=-1上運動時,求△ABC外接圓的圓心Q的軌跡E的方程;
(3)過點F(0,
3
2
)作互相垂直的直線l1l2,分別交軌跡E于M,N和R,Q.求四邊形MRNQ的面積的最小值.

查看答案和解析>>

如圖,直線AB與橢圓:
x2
a2
+
y2
b2
=1
(a>b>0)交于A,B兩點,與x軸和y軸分別交于點P和點Q,點C是點A關于x軸的對稱點,直線BC與x軸交于點R.
(1)若點P為(6,0),點Q為(0,3),點A,B恰好是線段QP的兩個三等分點.
①求橢圓的方程;
②過坐標原點O引△ABC外接圓的切線,求切線長;
(2)當橢圓給定時,試探究OP•OR是否為定值?若是,請求出此定值;若不是,請說明理由.

查看答案和解析>>

 

說明:

      一、本解答指出了每題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內容比照評分標準制定相應的評分細則.

    二、對計算題,當考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應給分數(shù)的一半;如果后繼部分的解答有較嚴重的錯誤,就不再給分.

    三、解答右端所注分數(shù),表示考生正確做到這一步應得的累加分數(shù).

    四、只給整數(shù)分數(shù),選擇題和填空題不給中間分.

一、選擇題:本題考查基礎知識和基本運算,每小題5分,滿分60分.

1. A   2. D   3. C   4. C   5. B   6. D   7. B   8. A   9. C   10. D   11. B   12. C

二、填空題:本題考查基礎知識和基本運算,每小題4分,滿分16分.

13.         14.                 15.                 16.   

三、解答題:本大題共6小題,共74分,解答應寫出文字說明,證明過程或演算步驟.

17. 本題主要考查三角函數(shù)的基本公式,考查運算能力. 滿分12分.

解:(Ⅰ)在中,因為,

所以.   ……………………………(3分)

所以

.  …………………………(6分)

(Ⅱ)根據(jù)正弦定理得:,

所以. ……………………………(9分)

所以

. ………………………………………………………(12分)

18.本題主要考查直線與平面的位置關系,考查空間想像能力,推理論證能力和運算求解能

力. 滿分12分.

解:(Ⅰ)因為平面ABCD⊥平面ABE,且ABCD是正方形,所以BC⊥平面ABE,

因為G是等邊三角形ABE的邊AE的中點,所以BG⊥AE,……………(2分)

所以

     .…………………………………………(4分)

(Ⅱ)取DE中點M,連結MG、FM,

因為MG  AD,BF  AD,所以MG BF,

四邊形FBGM是平行四邊形,所以BG//FM.(6分)

又因為FM平面EFD,BG平面EFD,

所以BG//平面EFD.         ………………(8分)

(Ⅲ)因為DA⊥平面ABE,BG平面ABE,所以DA⊥BG. …………………(9分)

   又BG⊥AE,ADAE=A,

   所以BG⊥平面DAE,又AP平面DAE,………………………………(11分)

   所以BG⊥AP.    ……………………………………………………………(12分)

19. 本題主要考查等差數(shù)列、等比數(shù)列的基本知識,考查運算求解能力及推理能力. 滿分12分.

解:(Ⅰ)設該等差數(shù)列的公差為,依題意得:  ………(2分)

解得:  ………………………………………………………(4分)

所以數(shù)列的通項公式為.   ………………………………(6分)

(Ⅱ)依題意得:………………(9分)

.  ………(12分)

20. 本題主要考查概率、統(tǒng)計的基本知識,考查應用意識. 滿分12分.

解:(Ⅰ)設每個報名者能被聘用的概率為P,依題意有:

.

答:每個報名者能被聘用的概率為0.02.  ………………………………………(4分)

(Ⅱ)設24名筆試者中有x名可以進入面試,依樣本估計總體可得:

    ,解得:,從表中可知面試的切線分數(shù)大約為80分.

答:可以預測面試的切線分數(shù)大約為80分.  ……………………………………(8分)

(Ⅲ)從聘用的四男、二女中選派兩人的基本事件有:(a,b),( a,c) , (a, d) ,( a, e) ,

(a, f) ,( b, c) ,(b,d),( b, e) ,( b, f) ,(c, d) ,(c, e),( c, f) ,( d, e) ,( d, f) ,(e, f),共15種.

選派一男一女參加某項培訓的種數(shù)有:

     (a,e) ,( a, f) , (b,e) ,(b, f),(c,e),(c, f) ,(d,e) ,(d, f),共8種

所以選派結果為一男一女的概率為.

答:選派結果為一男一女的概率為.       …………………………………(12分)

21.本題主要考查圓、直線與橢圓的位置關系等基本知識,考查運算求解能力和分析問題、

解決問題的能力. 滿分12分

解:(Ⅰ)由已知得,,所以

,所以,橢圓C的方程為   ………(3分)

因為,所以,可求得,…(5分)

所以的外接圓D的方程是

………………………………………………………………(7分)(少一解扣1分)

(Ⅱ)當直線的斜率不存在時,由(Ⅰ)得,

可得,所以.…………………………………(8分)

當直線的斜率存在時,設其斜率為,顯然,

則直線的方程為,設點

代入方程,并化簡得:

    ……………………………………(9分)

可得:,     ……………………(10分)

所以

綜上,.  ………………………………………………………(12分)

22.本題主要考查函數(shù)的單調性、極值、最值、不等式、方程的解等基本知識,考查運用導

數(shù)研究函數(shù)性質的方法,考查分類與整合及化歸與轉化等數(shù)學思想. 滿分14分.

解:(Ⅰ)依題意,知的定義域為.    …………………………………(1分)

時,,

.    ………………………………(2分)

,解得.

時,,此時單調遞增;

時,,此時單調遞減. ……………………………(3分)

所以的極大值為,此即為最大值 . ……………………(4分)

(Ⅱ),

所以,在上恒成立,………………(6分)

所以 ,…………………………………(7分)

時,取得最大值.所以. ………………(9分)

(Ⅲ)因為方程有唯一實數(shù)解,所以有唯一實數(shù)解.設,則.

,得

因為,

所以(舍去),, ………(10分)

時,,單調遞減,

時,單調遞增.

時,取最小值.  ……………………(11分)

因為有唯一解,所以

,即

所以,

因為,所以. …………………………(12分)

設函數(shù),

因為當時,是增函數(shù),所以至多有一解.  ………(13分)

因為,所以方程的解為,即,

解得                ……………………………………………(14分)

 

 


同步練習冊答案