14.點上移動時.表達式的最小值是 . 查看更多

 

題目列表(包括答案和解析)

已知拋物線的頂點為原點,其焦點到直線的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.

(1) 求拋物線的方程;

(2) 當點為直線上的定點時,求直線的方程;

(3) 當點在直線上移動時,求的最小值.

 

查看答案和解析>>

已知拋物線的頂點為原點,其焦點到直線的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.

(1) 求拋物線的方程;

(2) 當點為直線上的定點時,求直線的方程;

(3) 當點在直線上移動時,求的最小值.

查看答案和解析>>

已知拋物線的頂點為原點,其焦點到直線 的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.

(Ⅰ)求拋物線的方程;

(Ⅱ)當點為直線上的定點時,求直線的方程;

(Ⅲ)當點在直線上移動時,求的最小值.

 

查看答案和解析>>

如圖,△ABC中,AB=4,AC=4,∠BAC=60°,延長CB到D,使,當E點在線段AD上移動時,若的最大值是(    )

       A.1                        B.                   

       C.3                        D.

 

查看答案和解析>>

已知拋物線的頂點為原點,其焦點到直線的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.

(Ⅰ)求拋物線的方程;

(Ⅱ)設點為直線上的點,求直線的方程;

(Ⅲ) 當點在直線上移動時,求的最小值.

 

查看答案和解析>>

 

一、選擇題:

       BDDCB  BBAAC  AC

二、填空題:

13.   14.6   15.    16.

17.解:(I)取AC的中點G,連接OG,EG,

      

       平面OEG

           5分

20090514

       平面ABC

      

       又

       又F為AB中點,

      

       ,

       平面SOF,

       平面SAB,

       平面SAB      10分

18.解:

      

      

      

            6分

   (I)由,

    得對稱軸方程     8分

   (II)由已知條件得,

      

      

            12分

19.解:設點,點共有16個:(0,0),(0,-1),(-1,0),(0,1),(1,0),

   (0,2),(2,0),(-1,-1),(-1,1),(1,-1),(-1,2),(2,-1),(1,1),(1,2),

   (2,1),(2,2)       3分

   (I)傾斜角為銳角,

       ,

       則點P有(-1,1),(1,-1),(-1,2),(2,-1),

           6分

   (II)直線不平行于x軸且不經(jīng)過第一象限

   

       即     10分

       *點P有(-1,-1),(-1,0),

       概率      12分

20.解:(I),直線AF2的方程為

       設

       則有,

      

           6分

   (II)假設存在點Q,使

      

             8分

      

       *Q在以MN為直徑的圓(除去M,N點)上,

       圓心O(0,0),半徑為

       又點Q在圓

       *圓O與圓相離,假設不成立

       *上不存在符合題意的點Q。      12分

21.解:(I)

       是等差數(shù)列

       又

           2分

      

      

            5分

       又

       為首項,以為公比的等比數(shù)列      6分

   (II)

      

       當

       又               

       是單調(diào)遞增數(shù)列      9分

   (III)時,

      

       即

              12分

22.解L

       的值域為[0,1]        2分

       設的值域為A,

       ,

       總存在

      

      

   (1)當時,

       上單調(diào)遞減,

      

      

           5分

   (2)當時,

      

       令

       (舍去)

       ①當時,列表如下:

      

0

3

 

-

0

+

 

0

       ,

       則

            9分

       ②當時,時,

       函數(shù)上單調(diào)遞減

      

      

              11分

       綜上,實數(shù)的取值范圍是      12分


同步練習冊答案