所以.要求的最小值.只需求的最小值 -- 8分 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

       單位為30元/件的日用品上市以后供不應(yīng)求,為滿足更多的消費者,某商場在銷售的過程中要求購買這種產(chǎn)品的顧客必須參加如下活動:搖動如圖所示的游戲轉(zhuǎn)盤(上面扇形的圓心角都相等),按照指針?biāo)竻^(qū)域的數(shù)字購買商品的件數(shù),在搖動轉(zhuǎn)盤之前,顧客可以購買20元/張的代金券(限每人至多買12張),每張可以換一件該產(chǎn)品,如果不能按照指針?biāo)竻^(qū)域的數(shù)字將代金券用完,那么余下的不能再用,但商場會以6元/張的價格回收代金券,每人只能參加一次這個活動,并且不能代替別人購買。

   (1)如果某顧客購買12張代金券,最好的結(jié)果是什么?出現(xiàn)這種結(jié)果的概率是多少?

   (2)求需要這種產(chǎn)品的顧客,能夠購買到該產(chǎn)品件數(shù)的分布列及均值;

   (3)如果某顧客購買8張代金券,求該顧客得到優(yōu)惠的錢數(shù)的均值。

查看答案和解析>>

漢諾塔問題是指有三根桿子和套在一根桿子上的若干大小不等的碟片,按下列規(guī)則,把碟片從一根桿子上全部移到另一根桿子上:(1)每次只能移動1個碟片;(2)較大的碟片不能放在較小的碟片上面.
如圖所示,將B桿上所有碟片移到A桿上,C桿可以作為過渡桿使用,稱將碟片從一根桿子移動到另一根桿子為移動一次,記將B桿子上的n個碟片移動到A桿上最少需要移動an次.
(1)寫出a1,a2,a3,a4的值;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)bn=
1
an+1
+
1
anan+1
,數(shù)列{bn}的前n項和為Sn,證明
2
3
Sn<1

查看答案和解析>>

漢諾塔問題是指有三根桿子和套在一根桿子上的若干大小不等的碟片,按下列規(guī)則,把碟片從一根桿子上全部移到另一根桿子上:(1)每次只能移動1個碟片;(2)較大的碟片不能放在較小的碟片上面.
如圖所示,將B桿上所有碟片移到A桿上,C桿可以作為過渡桿使用,稱將碟片從一根桿子移動到另一根桿子為移動一次,記將B桿子上的n個碟片移動到A桿上最少需要移動an次.
(1)寫出a1,a2,a3,a4的值;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)

查看答案和解析>>

漢諾塔問題是指有三根桿子和套在一根桿子上的若干大小不等的碟片,按下列規(guī)則,把碟片從一根桿子上全部移到另一根桿子上:(1)每次只能移動1個碟片;(2)較大的碟片不能放在較小的碟片上面.
如圖所示,將B桿上所有碟片移到A桿上,C桿可以作為過渡桿使用,稱將碟片從一根桿子移動到另一根桿子為移動一次,記將B桿子上的n個碟片移動到A桿上最少需要移動an次.
(1)寫出a1,a2,a3,a4的值;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)

查看答案和解析>>

精英家教網(wǎng)漢諾塔問題是根據(jù)一個傳說形成的一個問題:有三根桿子和套在一根桿子上的若干大小不等的穿孔圓盤,按下列規(guī)則,把圓盤從一根桿子上全部移到另一根桿子上.
①每次只能移動1個碟片;②大盤不能疊在小盤上面.
如圖所示,將A桿上所有碟片移到C桿上,B桿可以作為過渡桿使用,稱將碟片從一個桿子移動到另一個標(biāo)子為移動一次,記將A桿子上的n個碟片移動到C桿上最少需要移動an次.
(Ⅰ)寫出a1,a2,a3,a4的值;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)設(shè)bn=
nan+1
,求數(shù)列{bn}的前n項和Sn.

查看答案和解析>>


同步練習(xí)冊答案