題目列表(包括答案和解析)
在四棱錐中,平面,底面為矩形,.
(Ⅰ)當時,求證:;
(Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.
【解析】第一位女利用線面垂直的判定定理和性質定理得到。當a=1時,底面ABCD為正方形,
又因為,………………2分
又,得證。
第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設BQ=m,則Q(1,m,0)(0《m《a》
要使,只要
所以,即………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得
由此知道a=2, 設平面POQ的法向量為
,所以 平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
解:(Ⅰ)當時,底面ABCD為正方形,
又因為,又………………3分
(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設BQ=m,則Q(1,m,0)(0《m《a》要使,只要
所以,即………6分
由此可知時,存在點Q使得
當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,
設平面POQ的法向量為
,所以 平面PAD的法向量
則的大小與二面角A-PD-Q的大小相等所以
因此二面角A-PD-Q的余弦值為
如圖,在三棱錐中,平面平面,,,,為中點.(Ⅰ)求點B到平面的距離;(Ⅱ)求二面角的余弦值.
【解析】第一問中利用因為,為中點,所以
而平面平面,所以平面,再由題設條件知道可以分別以、、為,, 軸建立直角坐標系得,,,,,,
故平面的法向量而,故點B到平面的距離
第二問中,由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
解:(Ⅰ)因為,為中點,所以
而平面平面,所以平面,
再由題設條件知道可以分別以、、為,, 軸建立直角坐標系,得,,,,
,,故平面的法向量
而,故點B到平面的距離
(Ⅱ)由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過作圓柱的截面交下底面于.
(1)求證:;
(2)若四邊形ABCD是正方形,求證;
(3)在(2)的條件下,求二面角A-BC-E的平面角的一個三角函數(shù)值。
【解析】第一問中,利用由圓柱的性質知:AD平行平面BCFE
又過作圓柱的截面交下底面于.∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF 。粒摹危牛
第二問中,由線面垂直得到線線垂直。四邊形ABCD是正方形 又
BC、AE是平面ABE內兩條相交直線
第三問中,設正方形ABCD的邊長為x,則在
在
由(2)可知:為二面角A-BC-E的平面角,所以
證明:(1)由圓柱的性質知:AD平行平面BCFE
又過作圓柱的截面交下底面于.∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF AD∥EF
(2) 四邊形ABCD是正方形 又
BC、AE是平面ABE內兩條相交直線
(3)設正方形ABCD的邊長為x,則在
在
由(2)可知:為二面角A-BC-E的平面角,所以
1 | 16 |
零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎知識,考查數(shù)據(jù)處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.
(Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結果有:,,,
,,,共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:,,共有6種.
所以P(B)=.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
(Ⅲ)求二面角B-EF-A的正切值。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com