題目列表(包括答案和解析)
(本小題滿分12分)
已知函數滿足對一切都有,且,
當時有.
(1)求的值;
(2)判斷并證明函數在上的單調性;
(3)解不等式:.
)已知函數滿足對一切都有,且,當時有.
(1)求的值;
(2)判斷并證明函數在上的單調性;
(3)解不等式:
已知函數的圖象過坐標原點O,且在點處的切線的斜率是.
(Ⅰ)求實數的值;
(Ⅱ)求在區(qū)間上的最大值;
(Ⅲ)對任意給定的正實數,曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.
【解析】第一問當時,,則。
依題意得:,即 解得
第二問當時,,令得,結合導數和函數之間的關系得到單調性的判定,得到極值和最值
第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。
不妨設,則,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
(Ⅰ)當時,,則。
依題意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①當時,,令得
當變化時,的變化情況如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
單調遞減 |
極小值 |
單調遞增 |
極大值 |
單調遞減 |
又,,!在上的最大值為2.
②當時, .當時, ,最大值為0;
當時, 在上單調遞增。∴在最大值為。
綜上,當時,即時,在區(qū)間上的最大值為2;
當時,即時,在區(qū)間上的最大值為。
(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。
不妨設,則,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
若,則代入(*)式得:
即,而此方程無解,因此。此時,
代入(*)式得: 即 (**)
令 ,則
∴在上單調遞增, ∵ ∴,∴的取值范圍是。
∴對于,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數,曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上
設函數f(x)=lnx,g(x)=ax+,函數f(x)的圖像與x軸的交點也在函數g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學。科。網]
(Ⅰ)求a、b的值;
(Ⅱ)設x>0,試比較f(x)與g(x)的大小.[來源:學,科,網Z,X,X,K]
【解析】第一問解:因為f(x)=lnx,g(x)=ax+
則其導數為
由題意得,
第二問,由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數,而F(1)=0, …………9分
∴當時,,有;當時,,有;當x=1時,,有
解:因為f(x)=lnx,g(x)=ax+
則其導數為
由題意得,
(11)由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數,而F(1)=0, …………9分
∴當時,,有;當時,,有;當x=1時,,有
對于給定的以下四個命題,其中正確命題的個數為
①函數是奇函數;
②函數在和都是增函數,若,且則一定有;
③函數在上為奇函數,且當時有,則當,;
④函數的值域為
A.1 B.2 C .3 D. 4
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com