(Ⅲ)若.函數(shù)在和處取得極值.且.是坐標原點.證明:直線與直線不可能垂直. 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=x3+ax2-bx+c,a,b,c∈R,已知方程f(x)=0有三個實根x1,x2,x3,即f(x)=(x-x1)(x-x2)(x-x3
(1)求x1+x2+x3,x1x2+x2x3+x1x3和x1x2x3的值.(結(jié)果用a,b,c表示)
(2)若a∈Z,b∈Z且|b|<2,f(x)在x=α,x=β處取得極值且-1<α<0<β<1,試求此方程三個根兩兩不等時c的取值范圍.

查看答案和解析>>

函數(shù)f(x)=x3+ax2-bx+c,a,b,c∈R,已知方程f(x)=0有三個實根x1,x2,x3,即f(x)=(x-x1)(x-x2)(x-x3
(1)求x1+x2+x3,x1x2+x2x3+x1x3和x1x2x3的值.(結(jié)果用a,b,c表示)
(2)若a∈Z,b∈Z且|b|<2,f(x)在x=α,x=β處取得極值且-1<α<0<β<1,試求此方程三個根兩兩不等時c的取值范圍.

查看答案和解析>>

設(shè)函數(shù)處取得極值,且曲線在點處的切線垂直于直線.

(Ⅰ) 求的值;

(Ⅱ)求曲線和直線所圍成的封閉圖形的面積;

(Ⅲ)設(shè)函數(shù),若方程有三個不相等的實根,求的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)的運用。利用導(dǎo)數(shù)求解曲邊梯形的面積,以及求解函數(shù)與方程的根的問題的綜合運用。

 

查看答案和解析>>

設(shè)函數(shù)處取得極值,且曲線在點處的切線垂直于直線.
(Ⅰ) 求的值;
(Ⅱ)求曲線和直線所圍成的封閉圖形的面積;
(Ⅲ)設(shè)函數(shù),若方程有三個不相等的實根,求的取值范圍.

查看答案和解析>>

(12分)已知函數(shù)處取得極值,且在點處的切線的斜率為2。

  (1)求a、b的值;

  (2)求函數(shù)的單調(diào)區(qū)間和極值;

(3)若關(guān)于x的方程上恰有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍。

 

查看答案和解析>>

一、選擇題(每小題5分,共50分)

6ec8aac122bd4f6e

二、填空題(每小題4分,共28分)

6ec8aac122bd4f6e

三、解答題

18.解:(Ⅰ)由已有

6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e

                                    (4分)

 

6ec8aac122bd4f6e

                                            (6分)

 

(Ⅱ)由(1)6ec8aac122bd4f6e6ec8aac122bd4f6e                                 (8分)

所以6ec8aac122bd4f6e              (10分)

6ec8aac122bd4f6e                                                      (12分)

6ec8aac122bd4f6e

6ec8aac122bd4f6e                                  (14分)

 

19.解:(Ⅰ)同學甲同學恰好投4次達標的概率6ec8aac122bd4f6e           (4分)

(Ⅱ)6ec8aac122bd4f6e可取的值是6ec8aac122bd4f6e

6ec8aac122bd4f6e                                              (6分)

6ec8aac122bd4f6e                                            (8分)

6ec8aac122bd4f6e                                              (10分)

6ec8aac122bd4f6e的分布列為

6ec8aac122bd4f6e

3

4

5

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

                                                                      (12分)

所以6ec8aac122bd4f6e的數(shù)學期望為6ec8aac122bd4f6e                   (14分)

 

20.解:(Ⅰ)∵PA⊥底面ABCD,BC6ec8aac122bd4f6e平面AC,∴PA⊥BC

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC                (4分)

 

(Ⅱ)取CD的中點E,則AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE

建立如圖所示空間直角坐標系,則

A(0,,0,0),P(0,0,6ec8aac122bd4f6e),C(6ec8aac122bd4f6e,0),D(6ec8aac122bd4f6e,0)

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e                  (6分)

易求6ec8aac122bd4f6e為平面PAC的一個法向量.

6ec8aac122bd4f6e為平面PDC的一個法向量                                  (9分)

∴cos6ec8aac122bd4f6e

故二面角D-PC-A的正切值為2.  (11分)

(Ⅲ)設(shè)6ec8aac122bd4f6e,則

   6ec8aac122bd4f6e,

解得點6ec8aac122bd4f6e,即6ec8aac122bd4f6e   (13分)

6ec8aac122bd4f6e6ec8aac122bd4f6e(不合題意舍去)或6ec8aac122bd4f6e

所以當6ec8aac122bd4f6e6ec8aac122bd4f6e的中點時,直線6ec8aac122bd4f6e與平面6ec8aac122bd4f6e所成角的正弦值為6ec8aac122bd4f6e   (15分)

 

21.解:(Ⅰ)設(shè)直線6ec8aac122bd4f6e的方程為:6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e,所以6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e                     (4分)

6ec8aac122bd4f6e6ec8aac122bd4f6e點的坐標為6ec8aac122bd4f6e.

可求得拋物線的標準方程為6ec8aac122bd4f6e.                                       (6分)

(Ⅱ)設(shè)直線6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e,代入拋物線方程并整理得6ec8aac122bd4f6e    (8分)     

設(shè)6ec8aac122bd4f6e6ec8aac122bd4f6e

設(shè)6ec8aac122bd4f6e,則6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e                                      (11分)

6ec8aac122bd4f6e時上式是一個與6ec8aac122bd4f6e無關(guān)的常數(shù).

所以存在定點6ec8aac122bd4f6e,相應(yīng)的常數(shù)是6ec8aac122bd4f6e.                                     (14分)

 

22.解:(Ⅰ)當6ec8aac122bd4f6e6ec8aac122bd4f6e              (2分)

6ec8aac122bd4f6e6ec8aac122bd4f6e上遞增,在6ec8aac122bd4f6e上遞減

所以6ec8aac122bd4f6e在0和2處分別達到極大和極小,由已知有

6ec8aac122bd4f6e6ec8aac122bd4f6e,因而6ec8aac122bd4f6e的取值范圍是6ec8aac122bd4f6e.                                   (4分)

(Ⅱ)當6ec8aac122bd4f6e時,6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e可化為6ec8aac122bd4f6e6ec8aac122bd4f6e,記6ec8aac122bd4f6e

6ec8aac122bd4f6e                                        (7分)

6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e上遞減,在6ec8aac122bd4f6e上遞增.

6ec8aac122bd4f6e

從而6ec8aac122bd4f6e上遞增

因此6ec8aac122bd4f6e6ec8aac122bd4f6e                           (10分)

(Ⅲ)假設(shè)6ec8aac122bd4f6e6ec8aac122bd4f6e,即6ec8aac122bd4f6e6ec8aac122bd4f6e=6ec8aac122bd4f6e

6ec8aac122bd4f6e,

6ec8aac122bd4f6e                                     (12分)

6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e(x)=0的兩根可得,6ec8aac122bd4f6e

從而有6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e≥26ec8aac122bd4f6e,這與6ec8aac122bd4f6e<26ec8aac122bd4f6e矛盾.                                

故直線6ec8aac122bd4f6e與直線6ec8aac122bd4f6e不可能垂直.                                               (15分)

 


同步練習冊答案