單調(diào)遞減.在內(nèi)單調(diào)遞增.所以. 查看更多

 

題目列表(包括答案和解析)

如圖,,,…,,…是曲線上的點(diǎn),,,…,,…是軸正半軸上的點(diǎn),且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).

(1)寫出之間的等量關(guān)系,以及、之間的等量關(guān)系;

(2)求證:);

(3)設(shè),對(duì)所有,恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問利用有,得到

第二問證明:①當(dāng)時(shí),可求得,命題成立;②假設(shè)當(dāng)時(shí),命題成立,即有則當(dāng)時(shí),由歸納假設(shè)及,

第三問 

.………………………2分

因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

解:(1)依題意,有,,………………4分

(2)證明:①當(dāng)時(shí),可求得,命題成立; ……………2分

②假設(shè)當(dāng)時(shí),命題成立,即有,……………………1分

則當(dāng)時(shí),由歸納假設(shè)及,

解得不合題意,舍去)

即當(dāng)時(shí),命題成立.  …………………………………………4分

綜上所述,對(duì)所有,.    ……………………………1分

(3) 

.………………………2分

因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>

中,滿足,邊上的一點(diǎn).

(Ⅰ)若,求向量與向量夾角的正弦值;

(Ⅱ)若=m  (m為正常數(shù)) 且邊上的三等分點(diǎn).,求值;

(Ⅲ)若的最小值。

【解析】第一問中,利用向量的數(shù)量積設(shè)向量與向量的夾角為,則

=,得,又,則為所求

第二問因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以,

(1)當(dāng)時(shí),則= 

(2)當(dāng)時(shí),則=

第三問中,解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">,;

所以于是

從而

運(yùn)用三角函數(shù)求解。

(Ⅰ)解:設(shè)向量與向量的夾角為,則

=,得,又,則為所求……………2

(Ⅱ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,=m所以

(1)當(dāng)時(shí),則=;-2分

(2)當(dāng)時(shí),則=;--2分

(Ⅲ)解:設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">,;

所以于是

從而---2

==

=…………………………………2

,,則函數(shù),在遞減,在上遞增,所以從而當(dāng)時(shí),

 

查看答案和解析>>

(08年長(zhǎng)沙一中一模理)已知函數(shù)的圖象過點(diǎn),且在內(nèi)單調(diào)遞減,在上單調(diào)遞增.

(1)證明并求的解析式;

(2)若對(duì)于任意的,不等式恒成立,試問這樣的是否存在.若存在,請(qǐng)求出的范圍,若不存在,說明理由;

(3)已知數(shù)列中,求證:.

查看答案和解析>>

對(duì)于定義域?yàn)?img width=18 height=18 src="http://thumb.zyjl.cn/pic1/1899/sx/109/87309.gif">的函數(shù),若同時(shí)滿足:①內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間,使上的值域?yàn)?img width=38 height=22 src="http://thumb.zyjl.cn/pic1/1899/sx/116/87316.gif">;那么把函數(shù))叫做閉函數(shù).

(1) 求閉函數(shù)符合條件②的區(qū)間

(2) 若是閉函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

(本小題共12分)

已知函數(shù)的圖象過點(diǎn),且在內(nèi)單調(diào)遞減,在上單調(diào)遞增。

(1)求的解析式;

(2)若對(duì)于任意的,不等式恒成立,試問這樣的是否存在.若存在,請(qǐng)求出的范圍,若不存在,說明理由;

 

查看答案和解析>>


同步練習(xí)冊(cè)答案