題目列表(包括答案和解析)
設(shè)函數(shù),若為函數(shù)的一個極值點,則下列圖象不可能為的圖象是
【答案】D
【解析】設(shè),∴,
又∴為的一個極值點,
∴,即,
∴,
當時,,即對稱軸所在直線方程為;
當時,,即對稱軸所在直線方程應大于1或小于-1.
【答案】
【解析】設(shè),有幾何意義知的最小值為, 又因為存在實數(shù)x滿足,所以只要2大于等于f(x)的最小值即可.即2,解得:∈,所以a的取值范圍是.故答案為:.
設(shè)函數(shù).
(I)求的單調(diào)區(qū)間;
(II)當0<a<2時,求函數(shù)在區(qū)間上的最小值.
【解析】第一問定義域為真數(shù)大于零,得到..
令,則,所以或,得到結(jié)論。
第二問中, ().
.
因為0<a<2,所以,.令 可得.
對參數(shù)討論的得到最值。
所以函數(shù)在上為減函數(shù),在上為增函數(shù).
(I)定義域為. ………………………1分
.
令,則,所以或. ……………………3分
因為定義域為,所以.
令,則,所以.
因為定義域為,所以. ………………………5分
所以函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為. ………………………7分
(II) ().
.
因為0<a<2,所以,.令 可得.…………9分
所以函數(shù)在上為減函數(shù),在上為增函數(shù).
①當,即時,
在區(qū)間上,在上為減函數(shù),在上為增函數(shù).
所以. ………………………10分
②當,即時,在區(qū)間上為減函數(shù).
所以.
綜上所述,當時,;
當時,
如圖,直線與拋物線交于兩點,與軸相交于點,且.
(1)求證:點的坐標為;
(2)求證:;
(3)求的面積的最小值.
【解析】設(shè)出點M的坐標,并把過點M的方程設(shè)出來.為避免對斜率不存在的情況進行討論,可以設(shè)其方程為,然后與拋物線方程聯(lián)立消x,根據(jù),即可建立關(guān)于的方程.求出的值.
(2)在第(1)問的基礎(chǔ)上,證明:即可.
(3)先建立面積S關(guān)于m的函數(shù)關(guān)系式,根據(jù)建立即可,然后再考慮利用函數(shù)求最值的方法求最值.
如圖,在正方體中,是棱的中點,在棱上.
且,若二面角的余弦值為,求實數(shù)的值.
【解析】以A點為坐標原點,AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標系,設(shè)正方體的棱長為4,分別求出平面C1PQ法向量和面C1PQ的一個法向量,然后求出兩法向量的夾角,建立等量關(guān)系,即可求出參數(shù)λ的值.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com