題目列表(包括答案和解析)
【解析】若,必有.構(gòu)造函數(shù):,則恒成立,故有函數(shù)在x>0上單調(diào)遞增,即a>b成立.其余選項用同樣方法排除.
【答案】A
已知等差數(shù)列{an}的首項為4,公差為4,其前n項和為Sn,則數(shù)列 {}的前n項和為( 。
| A. |
| B. |
| C. |
| D. |
|
考點: | 數(shù)列的求和;等差數(shù)列的性質(zhì). |
專題: | 等差數(shù)列與等比數(shù)列. |
分析: | 利用等差數(shù)列的前n項和即可得出Sn,再利用“裂項求和”即可得出數(shù)列 {}的前n項和. |
解答: | 解:∵Sn=4n+=2n2+2n, ∴. ∴數(shù)列 {}的前n項和===. 故選A. |
點評: | 熟練掌握等差數(shù)列的前n項和公式、“裂項求和”是解題的關(guān)鍵. |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com