查看更多

 

題目列表(包括答案和解析)

20、(Ⅰ)求y=4x-2x+1的值域;
(Ⅱ)關(guān)于x的方程4x-2x+1+a=0有解,求實數(shù)a的取值范圍.

查看答案和解析>>

(Ⅰ)已知圓O:x2+y2=4和點M(1,a),若實數(shù)a>0且過點M有且只有一 條直線與圓O相切,求實數(shù)a的值,并求出切線方程;
(Ⅱ)過點(
2
,0)引直線l與曲線y=
1-x2
相交于A,B兩點,O為坐標(biāo)原點,當(dāng)△ABO的面積取得最大值時,求直線l的方程.

查看答案和解析>>

(Ⅰ)求函數(shù)f(x)=-
2px
(p>0)在點P(2,-2
p
)
處的切方程;
(Ⅱ)過點F(1,0)的直線l交拋物線y2=4x于A、B兩點,直線l1、l2分別切該拋物線于A、B,l1∩l2=M,求點M的橫坐標(biāo).

查看答案和解析>>

(Ⅰ)求極坐標(biāo)方程ρsin2θ-2•cosθ=0表示的曲線的焦點坐標(biāo);
(Ⅱ)設(shè)直線l:
x=2+3t
y=3+4t
(t為參數(shù))與題(Ⅰ)中的曲線交于A、B兩點,若P(2,3),求|PA|•|PB|的值.

查看答案和解析>>

(Ⅰ)如圖1,A,B,C是平面內(nèi)的三個點,且A與B不重合,P是平面內(nèi)任意一點,若點C在直線AB上,試證明:存在實數(shù)λ,使得:
PC
PA
+(1-λ)
PB

(Ⅱ)如圖2,設(shè)G為△ABC的重心,PQ過G點且與AB、AC(或其延長線)分別交于P,Q點,若
AP
=m
AB
AQ
=n
AC
,試探究:
1
m
+
1
n
的值是否為定值,若為定值,求出這個定值;若不是定值,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案