(Ⅰ)當(dāng)t=1時(shí).求函數(shù)在區(qū)間[0.2]的最值, 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=x-m(x+1)ln(x+1),(x>-1,m≥0)
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)m=1時(shí),若直線y=t與函數(shù)f(x)在[-
12
,1]
上的圖象有兩個(gè)交點(diǎn),求實(shí)數(shù)t的取值范圍;
(3)證明:當(dāng)a>b>0時(shí),(1+a)b<(1+b)a

查看答案和解析>>

設(shè)函數(shù)f(x)=
1
3
ax3+bx2+cx(a<b<c),其圖象在點(diǎn)A(1,f(1)),B(m,f(m))處的切線的斜率分別為0,-a.
(1)求證:0≤
b
a
<1
;
(2)若函數(shù)f(x)的遞增區(qū)間為[s,t],求|s-t|的取值范圍;
(3)若當(dāng)x≥k時(shí)(k是與a,b,c無(wú)關(guān)的常數(shù)),恒有f′(x)+a<0,試求k的最小值.

查看答案和解析>>

設(shè)函數(shù)f(x)=x-a(x+1)ln(x+1),(x>-1,a≥0)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=1時(shí),若方程f(x)=t在[-
12
,1]
上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍;
(Ⅲ)證明:當(dāng)m>n>0時(shí),(1+m)n<(1+n)m

查看答案和解析>>

設(shè)函數(shù)f(x)=
1
3
x3-ax
(a>0),g(x)=bx2+2b-1.
(1)若曲線y=f(x)與y=g(x)在它們的交點(diǎn)(1,c)處有相同的切線,求實(shí)數(shù)a,b的值;
(2)當(dāng)b=
1-a
2
時(shí),若函數(shù)h(x)=f(x)+g(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=1,b=0時(shí),求函數(shù)h(x)=f(x)+g(x)在區(qū)間[t,t+3]上的最小值.

查看答案和解析>>

設(shè)函數(shù).

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),若方程上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍;

(3)證明:當(dāng)m>n>0時(shí),.

查看答案和解析>>

說(shuō)明:

    一、本解答給出了每題要考查的主要知識(shí)和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評(píng)分標(biāo)準(zhǔn)制定相應(yīng)的評(píng)分細(xì)則。

二、對(duì)計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后續(xù)部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后續(xù)部分的給分,但不得超過(guò)該部分正確解答所給分?jǐn)?shù)的一半;如果后續(xù)部分的解答存在較嚴(yán)重的錯(cuò)誤,則不再給分。

三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù)。

四、每題只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分。

一、選擇題:

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

B

C

C

D

A

A

B

C

B

D

二、填空題:

11.40.6,1.1  12. 13. 14.30  15.  16.(1,1),(2,2),(3,4),(4,8)

三、解答題:

  17.(Ⅰ),                         ①            …………………2分

    又, ∴                 ②             ……………… 4分

    由①、②得              …………………………………………………………… 6分

   (Ⅱ)  ……………………………………… 8分

                 …………………………………………………………………… 10分

     …………………………………………………………………………12分

18.(Ⅰ)設(shè)點(diǎn),則,

,

,又,

,∴橢圓的方程為:    …………………………………………7分

(Ⅱ)當(dāng)過(guò)直線的斜率不存在時(shí),點(diǎn),則;

     當(dāng)過(guò)直線的斜率存在時(shí),設(shè)斜率為,則直線的方程為,

設(shè),由    得:

       …………………………………………10分

 

                                           ……13分

綜合以上情形,得:    ……………………………………………………14分

∴GH∥AD∥EF,∴E,F(xiàn),G,H四點(diǎn)共面. ……………………1分

又H為AB中點(diǎn),∴EH∥PB. 又EH面EFG,PB平面EFG,

∴PB∥平面EFG.                 ………………………………4分

   (Ⅱ)取BC的中點(diǎn)M,連結(jié)GM、AM、EM,則GM//BD,

∴∠EGM(或其補(bǔ)角)就是異面直線EG與BD所成的角.……6分

     在Rt△MAE中,

     同理,又GM=,………………7分

∴在△MGE中,     ………………8分

故異面直線EG與BD所成的角為arccos,                   ………………………………9分

又AB∩PA=A,∴AD⊥平面PAB. ……………………………………10分

又∵E,F(xiàn)分別是PA,PD中點(diǎn),∴EF∥AD,∴EF⊥平面PAB.   

又EF面EFQ,∴面EFQ⊥面PAB. ………………………………11分

過(guò)A作AT⊥ER于T,則AT⊥平面EFQ,

∴AT就是點(diǎn)A到平面EFQ的距離. ………………………………12分

設(shè),則

    在,            …………………………13分

     解得 故存在點(diǎn)Q,當(dāng)CQ=時(shí),點(diǎn)A到平面EFQ的距離為0.8. ……………………… 14分

解法二:建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),

    1. <var id="ibgcn"><optgroup id="ibgcn"></optgroup></var>

      1.    (Ⅰ) …………1分

            設(shè),  即,

           

                      ……………3分

            ,∴PB∥平面EFG. ………………………………………………………… 4分

           (Ⅱ)∵,              …………………………………………5分

            ,            ……………………… 8分

        故異面直線EG與BD所成的角為arcos.            …………………………………… 9分

           (Ⅲ)假設(shè)線段CD上存在一點(diǎn)Q滿足題設(shè)條件,令

            ∴點(diǎn)Q的坐標(biāo)為(2-m,2,0), ……………………………………10分

            而, 設(shè)平面EFQ的法向量為,則

             

            令,             ……………………………………………………12分

            又, ∴點(diǎn)A到平面EFQ的距離,……13分

            即,不合題意,舍去.

            故存在點(diǎn)Q,當(dāng)CQ=時(shí),點(diǎn)A到平面EFQ的距離為0.8.           ……………………14分

        20. (Ⅰ),          ………………2分

        當(dāng)時(shí),,        …………4分

           (Ⅱ)是單調(diào)增函數(shù);   ………………6分

        是單調(diào)減函數(shù);      ………………8分

           (Ⅲ)是偶函數(shù),對(duì)任意都有成立

        *  對(duì)任意都有成立

        1°由(Ⅱ)知當(dāng)時(shí),是定義域上的單調(diào)函數(shù),

        對(duì)任意都有成立

        時(shí),對(duì)任意都有成立                   …………10分

        2°當(dāng)時(shí),,由

        上是單調(diào)增函數(shù)在上是單調(diào)減函數(shù),∴對(duì)任意都有

        時(shí),對(duì)任意都有成立               ………………12分

        綜上可知,當(dāng)時(shí),對(duì)任意都有成立           .……14分

        21、(Ⅰ)設(shè)等差數(shù)列{}的公差是,則,解得

        所以                ……………………………………2分

        =-1<0

        適合條件①;又,所以當(dāng)=4或5時(shí),取得最大值20,即≤20,適合條件②。綜上所述, …………………………………………4分

        (Ⅱ)因?yàn)?sub>,所以當(dāng)n≥3時(shí),,此時(shí)數(shù)列單調(diào)遞減;當(dāng)=1,2時(shí),,即

        因此數(shù)列中的最大項(xiàng)是,所以≥7………………………………………………………8分

        (Ⅲ)假設(shè)存在正整數(shù),使得成立,

        由數(shù)列的各項(xiàng)均為正整數(shù),可得                ……………10分

        因?yàn)?sub>                 ……11分

        由              …13分

        因?yàn)?sub>

        依次類推,可得            ……………………………………………15分

        又存在,使,總有,故有,這與數(shù)列()的各項(xiàng)均為正整數(shù)矛盾!

        所以假設(shè)不成立,即對(duì)于任意,都有成立.           ………………………16分

         


        同步練習(xí)冊(cè)答案
        <kbd id="ibgcn"></kbd>