,b= 當(dāng)k為何值時(shí)(1).ka+b與a-3b垂直? (2).ka+b與a-3b平行?平行時(shí)它們是同向還是反向? 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知直角坐標(biāo)系中菱形ABCD的位置如圖,CD兩點(diǎn)的坐標(biāo)分別為(4,0),(0,3).現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從A,C同時(shí)出發(fā),點(diǎn)P沿線段AD向終點(diǎn)D運(yùn)動(dòng),點(diǎn)Q沿折線CBA向終點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1.(1)填空:菱形ABCD的邊長(zhǎng)是  ▲  、面積是

  ▲  、 高BE的長(zhǎng)是  ▲  ;

2.(2)探究下列問題:

①若點(diǎn)P的速度為每秒1個(gè)單位,點(diǎn)Q的速度為每秒2個(gè)單位.當(dāng)點(diǎn)Q在線段BA上時(shí),求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,以及S的最大值;

②若點(diǎn)P的速度為每秒1個(gè)單位,點(diǎn)Q的速度變?yōu)槊棵?i>k個(gè)單位,在運(yùn)動(dòng)過程中,任何時(shí)刻都有相應(yīng)的k值,使得△APQ沿它的一邊翻折,翻折前后兩個(gè)三角形組成的四邊形為菱形.請(qǐng)?zhí)骄慨?dāng)t = 4 秒時(shí)的情形,并求出k的值.

 

查看答案和解析>>

(本小題滿分12分)已知直角坐標(biāo)系中菱形ABCD的位置如圖,C,D兩點(diǎn)的坐標(biāo)分別為(4,0),(0,3).現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從A,C同時(shí)出發(fā),點(diǎn)P沿線段AD向終點(diǎn)D運(yùn)動(dòng),點(diǎn)Q沿折線CBA向終點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1.(1)填空:菱形ABCD的邊長(zhǎng)是  ▲  、面積是

  ▲  、 高BE的長(zhǎng)是  ▲  

2.(2)探究下列問題:

①若點(diǎn)P的速度為每秒1個(gè)單位,點(diǎn)Q的速度為每秒2個(gè)單位.當(dāng)點(diǎn)Q在線段BA上時(shí),求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,以及S的最大值;

②若點(diǎn)P的速度為每秒1個(gè)單位,點(diǎn)Q的速度變?yōu)槊棵?i>k個(gè)單位,在運(yùn)動(dòng)過程中,任何時(shí)刻都有相應(yīng)的k值,使得△APQ沿它的一邊翻折,翻折前后兩個(gè)三角形組成的四邊形為菱形.請(qǐng)?zhí)骄慨?dāng)t = 4 秒時(shí)的情形,并求出k的值.

 

查看答案和解析>>

在直角坐標(biāo)系中,已知拋物線與x軸交于點(diǎn)A(1,0)和點(diǎn)B,頂點(diǎn)為P.
(1)若點(diǎn)P的坐標(biāo)為(-1,4),求此時(shí)拋物線的解析式;
(2)如圖若點(diǎn)P的坐標(biāo)為(-1,k),k<0,點(diǎn)Q是y軸上一個(gè)動(dòng)點(diǎn),
當(dāng)k為何值時(shí),QB+QP取得最小值為5;
(3)試求滿足(2)時(shí)動(dòng)點(diǎn)Q的坐標(biāo). (本題12分)

查看答案和解析>>

在直角坐標(biāo)系中,已知拋物線與x軸交于點(diǎn)A(1,0)和點(diǎn)B,頂點(diǎn)為P.

 (1)若點(diǎn)P的坐標(biāo)為(-1,4),求此時(shí)拋物線的解析式;

(2)如圖若點(diǎn)P的坐標(biāo)為(-1,k),k<0,點(diǎn)Q是y軸上一個(gè)動(dòng)點(diǎn),

當(dāng)k為何值時(shí),QB+QP取得最小值為5;

(3)試求滿足(2)時(shí)動(dòng)點(diǎn)Q的坐標(biāo). (本題12分)

 

查看答案和解析>>

在直角坐標(biāo)系中,已知拋物線與x軸交于點(diǎn)A(1,0)和點(diǎn)B,頂點(diǎn)為P.
(1)若點(diǎn)P的坐標(biāo)為(-1,4),求此時(shí)拋物線的解析式;
(2)如圖若點(diǎn)P的坐標(biāo)為(-1,k),k<0,點(diǎn)Q是y軸上一個(gè)動(dòng)點(diǎn),
當(dāng)k為何值時(shí),QB+QP取得最小值為5;
(3)試求滿足(2)時(shí)動(dòng)點(diǎn)Q的坐標(biāo). (本題12分)

查看答案和解析>>


同步練習(xí)冊(cè)答案