14.點P(x.y)滿足則點P到坐標原點距離r的取值范圍是 . 查看更多

 

題目列表(包括答案和解析)

 

一、選擇題(本大題共12個小題,每小題5分,共60分)

    1―5  BCBAB    6―10  CDBDD   11―12AB

20090323

13.9

14.

15.(1,0)

16.420

三、解答題:

17.解:(1)

   (2)由(1)知,

       

18.解:設(shè)“通過第一關(guān)”為事件A1,“補過且通過第一關(guān)”為事件A2,“通過第二關(guān)”為事件B1,“補過且通過第二關(guān)”為事件B2。             (2分)

   (1)不需要補過就可獲得獎品的事件為A=A1?B1,又A1與B1相互獨立,則P(A)=P

(A1?B1)=P(A1)?P(B1)=。故他不需要補過就可獲得獎品的概率為。

(6分)

   (2)由已知得ξ=2,3,4,注意到各事件之間的獨立性與互斥性,可得

       

19.解法:1:(1)

   (2)過E作EF⊥PC,垂足為F,連結(jié)DF。             (8分)

<tbody id="liqco"></tbody>

      由Rt△EFC∽

        <label id="liqco"><em id="liqco"></em></label>
      • 解法2:(1)

           (2)設(shè)平面PCD的法向量為

                則

                   解得   

        AC的法向量取為

         角A―PC―D的大小為

        20.(1)由已知得    

          是以a2為首項,以

            (6分)

           (2)證明:

           

        21:解(1)由線方程x+2y+10-6ln2=0知,

            直線斜率為

          

            所以   解得a=4,b=3。    (6分)

           (2)由(1)得

        22.解:(1)設(shè)直線l的方程為

        因為直線l與橢圓交點在y軸右側(cè),

        所以  解得2

        l直線y截距的取值范圍為。          (4分)

           (2)①(Ⅰ)當AB所在的直線斜率存在且不為零時,

        設(shè)AB所在直線方程為

        解方程組           得

        所以

        設(shè)

        所以

        因為l是AB的垂直平分線,所以直線l的方程為

         

        因此

         又

           (Ⅱ)當k=0或不存在時,上式仍然成立。

        綜上所述,M的軌跡方程為(λ≠0)。  (9分)

        ②當k存在且k≠0時,由(1)得

          解得

        所以

        解法:(1)由于

        當且僅當4+5k2=5+4k2,即k≠±1時等號成立,

        此時,

         

        當k不存在時,

        綜上所述,                      (14分)

        解法(2):

        因為

        當且僅當4+5k2=5+4k2,即k≠±1時等號成立,

        此時。

        當k不存在時,

        綜上所述,。

         

         

         

         


        同步練習冊答案
        <input id="liqco"></input>