但比白球的2倍少.若把每一個白球都記作數(shù)值2.每一個紅球都記作數(shù)值3.則所有球的數(shù)值的總和等于60.現(xiàn)從中任取一個球.則取到紅球的概率等于 ▲ . 查看更多

 

題目列表(包括答案和解析)

一堆除顏色外其他特征都相同的紅白兩種顏色的球若干個,已知紅球的個數(shù)比白球的多,但比白球的2倍少,若把每一個白球都記作數(shù)值2,每一個紅球都記作數(shù)值3,則所有球的數(shù)值的總和等于60.現(xiàn)從中任取一個球,則取到紅球的概率等于
 

查看答案和解析>>

一堆除顏色外其他特征都相同的紅白兩種顏色的球若干個,已知紅球的個數(shù)比白球的多,但比白球的2倍少,若把每一個白球都記作數(shù)值2,每一個紅球都記作數(shù)值3,則所有球的數(shù)值的總和等于60.現(xiàn)從中任取一個球,則取到紅球的概率等于______.

查看答案和解析>>

一堆除顏色外其他特征都相同的紅白兩種顏色的球若干個,已知紅球的個數(shù)比白球的多,但比白球的2倍少,若把每一個白球都記作數(shù)值2,每一個紅球都記作數(shù)值3,則所有球的數(shù)值的總和等于60.現(xiàn)從中任取一個球,則取到紅球的概率等于______.

查看答案和解析>>

一堆除顏色外其他特征都相同的紅白兩種顏色的球若干個,已知紅球的個數(shù)比白球的多,但比白球的2倍少,若把每一個白球都記作數(shù)值2,每一個紅球都記作數(shù)值3,則所有球的數(shù)值的總和等于60.現(xiàn)從中任取一個球,則取到紅球的概率等于   

查看答案和解析>>

一堆除顏色外其他特征都相同的紅白兩種顏色的球若干個,已知紅球的個數(shù)比白球的多,但比白球的2倍少,若把每一個白球都記作數(shù)值2,每一個紅球都記作數(shù)值3,則所有球的數(shù)值的總和等于60.現(xiàn)從中任取一個球,則取到紅球的概率等于   

查看答案和解析>>

1-10.CDBBA   CACBD

11. 12. ①③④   13.-2或1  14. 、  15.2  16.  17..

18.

解:(1)由已知            7分

(2)由                                                                   10分

由余弦定理得                          14分

 

19.(1)證明:∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC,                                  3分

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC.                             5分

(2)解:過C作CE⊥AB于E,連接PE,

∵PA⊥底面ABCD,∴CE⊥面PAB,

∴直線PC與平面PAB所成的角為,                                                    10分

∵AD=CD=1,∠ADC=60°,∴AC=1,PC=2,

中求得CE=,∴.                                                  14分

 

20.解:(1)由①,得②,

②-①得:.                              4分

(2)由求得.          7分

,   11分

.                                                                 14分

 

21.解:

(1)由得c=1                                                                                     1分

,                                                         4分

市一次模文數(shù)參答―1(共2頁)

                                                                                        5分

(2),時取得極值.由.                                                                                          8分

,,∴當時,,

上遞減.                                                                                       12分

∴函數(shù)的零點有且僅有1個     15分

 

22.解:(1) 設(shè),由已知,

,                                        2分

設(shè)直線PB與圓M切于點A,

,

                                                 6分

(2) 點 B(0,t),點,                                                                  7分

進一步可得兩條切線方程為:

,                                   9分

,

,                                          13分

,又時,,

面積的最小值為                                                                            15分

 

 


同步練習冊答案
<li id="cokkg"><tbody id="cokkg"><dd id="cokkg"></dd></tbody></li>
    1. <del id="cokkg"><fieldset id="cokkg"></fieldset></del>
      <style id="cokkg"><strong id="cokkg"><pre id="cokkg"></pre></strong></style><table id="cokkg"><acronym id="cokkg"></acronym></table>