題目列表(包括答案和解析)
已知雙曲線,點(diǎn)、分別為雙曲線的左、右焦點(diǎn),動點(diǎn)在軸上方.
(1)若點(diǎn)的坐標(biāo)為是雙曲線的一條漸近線上的點(diǎn),求以、為焦點(diǎn)且經(jīng)過點(diǎn)的橢圓的方程;
(2)若∠,求△的外接圓的方程;
(3)若在給定直線上任取一點(diǎn),從點(diǎn)向(2)中圓引一條切線,切點(diǎn)為. 問是否存在一個定點(diǎn),恒有?請說明理由.
已知雙曲線,點(diǎn)、分別為雙曲線的左、右焦點(diǎn),動點(diǎn)在軸上方.
(1)若點(diǎn)的坐標(biāo)為是雙曲線的一條漸近線上的點(diǎn),求以、為焦點(diǎn)且經(jīng)過點(diǎn)的橢圓的方程;
(2)若∠,求△的外接圓的方程;
(3)若在給定直線上任取一點(diǎn),從點(diǎn)向(2)中圓引一條切線,切點(diǎn)為. 問是否存在一個定點(diǎn),恒有?請說明理由.
x2 |
16 |
y2 |
9 |
1-10.CDBBA CACBD
11. 12. ①③④ 13.-2或1 14. 、 15.2 16. 17..
18.
解:(1)由已知 7分
(2)由 10分
由余弦定理得 14分
19.(1)證明:∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC, 3分
∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC. 5分
(2)解:過C作CE⊥AB于E,連接PE,
∵PA⊥底面ABCD,∴CE⊥面PAB,
∴直線PC與平面PAB所成的角為, 10分
∵AD=CD=1,∠ADC=60°,∴AC=1,PC=2,
中求得CE=,∴. 14分
20.解:(1)由①,得②,
②-①得:. 4分
(2)由求得. 7分
∴, 11分
∴. 14分
21.解:
(1)由得c=1 1分
, 4分
|