于是有f()-f()=2m(cos2q-sin2q)=2mcos2q 查看更多

 

題目列表(包括答案和解析)

有人從“若a<b,則2a<
b2-a2
b-a
<2b”中找到靈感引入一個新概念,設F(x)=x2,f(x)=2x,于是有f(a)<
F(b)-F(a)
b-a
<f(b),此時稱F(x)為甲函數(shù),f(x)為乙函數(shù),下面命題正確的是( 。

查看答案和解析>>

有人從“若a<b,則2a<<2b”中找到靈感引入一個新概念,設F(x)=x2,f(x)=2x,于是有f(a)<<f(b),此時稱F(x)為甲函數(shù),f(x)為乙函數(shù),下面命題正確的是( )
A.若f(x)=3x2+2x則F(x)=x3+x2+C,C為常數(shù)
B.若f(x)=cosx,則F(x)=sinx+C,C為常數(shù)
C.若f(x)=x2+1,則F(x)為奇函數(shù)
D.若f(x)=ex,則F(2)<F(3)<F(5)

查看答案和解析>>

有人從“若a<b,則2a<數(shù)學公式<2b”中找到靈感引入一個新概念,設F(x)=x2,f(x)=2x,于是有f(a)<數(shù)學公式<f(b),此時稱F(x)為甲函數(shù),f(x)為乙函數(shù),下面命題正確的是


  1. A.
    若f(x)=3x2+2x則F(x)=x3+x2+C,C為常數(shù)
  2. B.
    若f(x)=cosx,則F(x)=sinx+C,C為常數(shù)
  3. C.
    若f(x)=x2+1,則F(x)為奇函數(shù)
  4. D.
    若f(x)=ex,則F(2)<F(3)<F(5)

查看答案和解析>>

已知定義在(-∞,0)∪(0,+∞)上的奇函數(shù)f(x)滿足f(1)=0,且在(0,+∞)上是增函數(shù).又函數(shù)g(θ)=sin2θ+mcosθ-2m(其中0≤θ≤
π2
)

(1)證明:f(x)在(-∞,0)上也是增函數(shù);
(2)若m≤0,分別求出函數(shù)g(θ)的最大值和最小值;
(3)若記集合M={m|恒有g(θ)<0},N={m|恒有f[g(θ)]<0},求M∩N.

查看答案和解析>>

已知定義域為(0,+∞)的函數(shù)f(x)滿足:對任意x∈(0,+∞),恒有f(2x)=2f(x)成立;當x∈(1,2]時,f(x)=2-x.給出如下結(jié)論:
①對任意m∈Z,有f(2m)=0;
②函數(shù)f(x)的值域為[0,+∞);
③存在n∈Z,使得f(2n+1)=9;
④“若k∈Z,若(a,b)⊆(2k,2k+1)”,則“函數(shù)f(x)在區(qū)間(a,b)上單調(diào)遞減”
其中所有正確結(jié)論的序號是
①②④
①②④

查看答案和解析>>


同步練習冊答案