聯(lián)立①②兩式得或 查看更多

 

題目列表(包括答案和解析)

有甲、乙兩個班級進行數(shù)學考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下聯(lián)表:

 

優(yōu)秀

非優(yōu)秀

合計

甲班

30

 

 

乙班

 

50

 

合計

 

 

200

已知全部200人中隨機抽取1人為優(yōu)秀的概率為

(1)請完成上面聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為“成績與班級有關系”

(3)從全部200人中有放回抽取3次,每次抽取一人,記被抽取的3人中優(yōu)秀的人數(shù)為,若每次抽取得結果是相互獨立的,求的分布列,期望和方差

參考公式與參考數(shù)據(jù)如下:

 

查看答案和解析>>

有甲、乙兩個班級進行數(shù)學考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下聯(lián)表:

 
優(yōu)秀
非優(yōu)秀
合計
甲班
30
 
 
乙班
 
50
 
合計
 
 
200
已知全部200人中隨機抽取1人為優(yōu)秀的概率為
(1)請完成上面聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為“成績與班級有關系”
(3)從全部200人中有放回抽取3次,每次抽取一人,記被抽取的3人中優(yōu)秀的人數(shù)為,若每次抽取得結果是相互獨立的,求的分布列,期望和方差
參考公式與參考數(shù)據(jù)如下:

查看答案和解析>>

有甲、乙兩個班級進行數(shù)學考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下聯(lián)表:
 
優(yōu)秀
非優(yōu)秀
合計
甲班
30
 
 
乙班
 
50
 
合計
 
 
200
已知全部200人中隨機抽取1人為優(yōu)秀的概率為
(1)請完成上面聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為“成績與班級有關系”
(3)從全部200人中有放回抽取3次,每次抽取一人,記被抽取的3人中優(yōu)秀的人數(shù)為,若每次抽取得結果是相互獨立的,求的分布列,期望和方差
參考公式與參考數(shù)據(jù)如下:

查看答案和解析>>

某中學研究性學習小組,為了考察高中學生的作文水平與愛看課外書的關系,在本校高三年級隨機調查了 50名學生.調査結果表明:在愛看課外書的25人中有18人作文水平好,另7人作文水平一般;在不愛看課外書的25人中有6人作文水平好,另19人作文水平一般.

(Ⅰ)試根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表,并運用獨立性檢驗思想,指出有多大把握認為中學生的作文水平與愛看課外書有關系?

高中學生的作文水平與愛看課外書的2×2列聯(lián)表

 

愛看課外書

不愛看課外書

總計

作文水平好

 

 

 

作文水平一般

 

 

 

總計

 

 

 

(Ⅱ)將其中某5名愛看課外書且作文水平好的學生分別編號為1、2、3、4、5,某5名愛看課外書且作文水平一般的學生也分別編號為1、2、3、4、5,從這兩組學生中各任選1人進行學習交流,求被選取的兩名學生的編號之和為3的倍數(shù)或4的倍數(shù)的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【解析】本試題主要考查了古典概型和列聯(lián)表中獨立性檢驗的運用。結合公式為判定兩個分類變量的相關性,

第二問中,確定

結合互斥事件的概率求解得到。

解:因為2×2列聯(lián)表如下

 

愛看課外書

不愛看課外書

總計

作文水平好

 18

 6

 24

作文水平一般

 7

 19

 26

總計

 25

 25

 50

 

查看答案和解析>>


同步練習冊答案