當(dāng)時(shí).原不等式為 查看更多

 

題目列表(包括答案和解析)

對(duì),不等式所表示的平面區(qū)域?yàn)?img width=21 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/64/344664.gif">,把內(nèi)的整點(diǎn)(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排成點(diǎn)列:

(1)求,;

(2)數(shù)列滿足,且時(shí).證明當(dāng)時(shí),

 ;

(3)在(2)的條件下,試比較與4的大小關(guān)系.

查看答案和解析>>

對(duì),不等式所表示的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130447114229.gif" style="vertical-align:middle;" />,把內(nèi)的整點(diǎn)(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排成點(diǎn)列:
(1)求;
(2)數(shù)列滿足,且時(shí).證明當(dāng)時(shí),
;
(3)在(2)的條件下,試比較與4的大小關(guān)系.

查看答案和解析>>

對(duì)n∈N*,不等式
x>0
y>0
y≤-nx+2n
所表示的平面區(qū)域?yàn)镈n,把Dn內(nèi)的整點(diǎn)(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排成點(diǎn)列:(x1,y1),(x2,y2),(x3,y3),…,(xn,yn).
(1)求xn,yn;
(2)數(shù)列{an}滿足a1=x1且n≥2時(shí),an=yn(
1
2y1
+
1
2y2
+
1
2y3
+…+
1
2yn
)
,求數(shù)列{an}的前n項(xiàng)和Sn;
(3)設(shè)c1=1,當(dāng)n≥2時(shí),cn=lg[2
y
2
_
•(1-
1
y
2
2
)•(1-
1
y
2
3
)•(1-
1
y
2
4
)•…•(1-
1
y
2
n
)]
,且數(shù)列{cn}的前n項(xiàng)和Tn,求T99

查看答案和解析>>

對(duì)n∈N*,不等式組
x>0
y>0
y≤-nx+2n
所表示的平面區(qū)域?yàn)镈n,Dn內(nèi)的整點(diǎn)(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排成點(diǎn)列.(x1,y1)(x2,y2),(x3,y3),…,(xn,yn
(1)求xn,yn
(2)數(shù)列{an}滿足a1=x1,且n≥2時(shí)an=
y
2
n
(
1
y
2
1
+
1
y
2
2
+…+
1
y
2
n-1
)
.證明當(dāng)n≥2時(shí),
an+1
(n+1)
-
an
n2
=
1
n2
;

查看答案和解析>>

對(duì)n∈N*,不等式數(shù)學(xué)公式所表示的平面區(qū)域?yàn)镈n,把Dn內(nèi)的整點(diǎn)(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排成點(diǎn)列:(x1,y1),(x2,y2),(x3,y3),…,(xn,yn).
(1)求xn,yn;
(2)數(shù)列{an}滿足a1=x1且n≥2時(shí),數(shù)學(xué)公式,求數(shù)列{an}的前n項(xiàng)和Sn;
(3)設(shè)c1=1,當(dāng)n≥2時(shí),數(shù)學(xué)公式,且數(shù)列{cn}的前n項(xiàng)和Tn,求T99

查看答案和解析>>


同步練習(xí)冊(cè)答案