題目列表(包括答案和解析)
如圖,分別是橢圓:+=1()的左、右焦點(diǎn),是橢圓的頂點(diǎn),是直線與橢圓的另一個(gè)交點(diǎn),=60°.
(Ⅰ)求橢圓的離心率;
(Ⅱ)已知△的面積為40,求的值.
【解析】 (Ⅰ)由題=60°,則,即橢圓的離心率為。
(Ⅱ)因△的面積為40,設(shè),又面積公式,又直線,
又由(Ⅰ)知,聯(lián)立方程可得,整理得,解得,,所以,解得。
設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,若不存在說明理由。
【解析】本試題主要是考查了橢圓方程的求解,待定系數(shù)法求解,并且考查了圓與橢圓的位置關(guān)系的研究,利用恒有交點(diǎn),聯(lián)立方程組和韋達(dá)定理一起表示向量OA,OB,并證明垂直。
設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,若不存在說明理由。
【解析】本試題主要是考查了橢圓方程的求解,待定系數(shù)法求解,并且考查了圓與橢圓的位置關(guān)系的研究,利用恒有交點(diǎn),聯(lián)立方程組和韋達(dá)定理一起表示向量OA,OB,并證明垂直。
設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,若不存在說明理由。
【解析】本試題主要是考查了橢圓方程的求解,待定系數(shù)法求解,并且考查了圓與橢圓的位置關(guān)系的研究,利用恒有交點(diǎn),聯(lián)立方程組和韋達(dá)定理一起表示向量OA,OB,并證明垂直。
設(shè)橢圓 :()的一個(gè)頂點(diǎn)為,,分別是橢圓的左、右焦點(diǎn),離心率 ,過橢圓右焦點(diǎn) 的直線 與橢圓 交于 , 兩點(diǎn).
(1)求橢圓的方程;
(2)是否存在直線 ,使得 ,若存在,求出直線 的方程;若不存在,說明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到,然后求解得到橢圓方程(2)中,對(duì)直線分為兩種情況討論,當(dāng)直線斜率存在時(shí),當(dāng)直線斜率不存在時(shí),聯(lián)立方程組,結(jié)合得到結(jié)論。
解:(1)橢圓的頂點(diǎn)為,即
,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分
(2)由題可知,直線與橢圓必相交.
①當(dāng)直線斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意. --------5分
②當(dāng)直線斜率存在時(shí),設(shè)存在直線為,且,.
由得, ----------7分
,,
=
所以, ----------10分
故直線的方程為或
即或
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com