題目列表(包括答案和解析)
設(shè)點是拋物線的焦點,是拋物線上的個不同的點().
(1) 當時,試寫出拋物線上的三個定點、、的坐標,從而使得
;
(2)當時,若,
求證:;
(3) 當時,某同學(xué)對(2)的逆命題,即:
“若,則.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構(gòu)造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線的焦點為,設(shè),
分別過作拋物線的準線的垂線,垂足分別為.
由拋物線定義得到
第二問設(shè),分別過作拋物線的準線垂線,垂足分別為.
由拋物線定義得
第三問中①取時,拋物線的焦點為,
設(shè),分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;
解:(1)拋物線的焦點為,設(shè),
分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得
因為,所以,
故可取滿足條件.
(2)設(shè),分別過作拋物線的準線垂線,垂足分別為.
由拋物線定義得
又因為
;
所以.
(3) ①取時,拋物線的焦點為,
設(shè),分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;,
則,
.
故,,,是一個當時,該逆命題的一個反例.(反例不唯一)
② 設(shè),分別過作
拋物線的準線的垂線,垂足分別為,
由及拋物線的定義得
,即.
因為上述表達式與點的縱坐標無關(guān),所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則
,
而,所以.
(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個不同的點,均為反例.)
③ 補充條件1:“點的縱坐標()滿足 ”,即:
“當時,若,且點的縱坐標()滿足,則”.此命題為真.事實上,設(shè),
分別過作拋物線準線的垂線,垂足分別為,由,
及拋物線的定義得,即,則
,
又由,所以,故命題為真.
補充條件2:“點與點為偶數(shù),關(guān)于軸對稱”,即:
“當時,若,且點與點為偶數(shù),關(guān)于軸對稱,則”.此命題為真.(證略)
如圖,是△的重心,、分別是邊、上的動點,且、、三點共線.
(1)設(shè),將用、、表示;
(2)設(shè),,證明:是定值;
(3)記△與△的面積分別為、.求的取值范圍.
(提示:
【解析】第一問中利用(1)
第二問中,由(1),得;①
另一方面,∵是△的重心,
∴
而、不共線,∴由①、②,得
第三問中,
由點、的定義知,,
且時,;時,.此時,均有.
時,.此時,均有.
以下證明:,結(jié)合作差法得到。
解:(1)
.
(2)一方面,由(1),得;①
另一方面,∵是△的重心,
∴. ②
而、不共線,∴由①、②,得
解之,得,∴(定值).
(3).
由點、的定義知,,
且時,;時,.此時,均有.
時,.此時,均有.
以下證明:.(法一)由(2)知,
∵,∴.
∵,∴.
∴的取值范圍
,,為常數(shù),離心率為的雙曲線:上的動點到兩焦點的距離之和的最小值為,拋物線:的焦點與雙曲線的一頂點重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線:(為負常數(shù))上任意一點向拋物線引兩條切線,切點分別為、,坐標原點恒在以為直徑的圓內(nèi),求實數(shù)的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程
第二問中,為,,,
故直線的方程為,即,
所以,同理可得:
借助于根與系數(shù)的關(guān)系得到即,是方程的兩個不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程
(Ⅱ)設(shè)為,,,
故直線的方程為,即,
所以,同理可得:,
即,是方程的兩個不同的根,所以
由已知易得,即
在證明為增函數(shù)的過程中,有下列四個命題:①增函數(shù)的定義是大前提;②增函數(shù)的定義是小前提;③函數(shù)滿足增函數(shù)的定義是小前提;④函數(shù)滿足增函數(shù)的定義是大前提;其中正確的命題是 ( )
(A)①② (B)②④ (C)①③ (D)②③
13 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com