[選做題] 在A.B.C.D四小題中只能選做2題,每小題10分,計(jì)20分.請(qǐng)把答案寫在答題紙的指定區(qū)域內(nèi).A.(選修4―1:幾何證明選講) 查看更多

 

題目列表(包括答案和解析)

選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.
A選修4-1:幾何證明選講
如圖,延長(zhǎng)⊙O的半徑OA到B,使OA=AB,DE是圓的一條切線,E是切點(diǎn),過(guò)點(diǎn)B作DE的垂線,垂足為點(diǎn)C.
求證:∠ACB=
1
3
∠OAC.
B選修4-2:矩陣與變換
已知矩陣A=
.
11
21
.
,向量
β
=
1
2
.求向量
a
,使得A2
a
=
β

C選修4-3:坐標(biāo)系與參數(shù)方程
已知橢圓C的極坐標(biāo)方程為ρ2=
a
3cos2θ+4sin2θ
,焦距為2,求實(shí)數(shù)a的值.
D選修4-4:不等式選講
已知函數(shù)f(x)=(x-a)2+(x-b)2+(x-c)2+
(a+b+c)2
3
(a,b.c為實(shí)數(shù))的最小值為m,若a-b+2c=3,求m的最小值.

查看答案和解析>>

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計(jì)20分.請(qǐng)把答案寫在答題紙的指定區(qū)域內(nèi).
A.(選修4-1:幾何證明選講)
如圖,圓O的直徑AB=8,C為圓周上一點(diǎn),BC=4,過(guò)C作圓的切線l,過(guò)A作直線l的垂線AD,D為垂足,AD與圓O交于點(diǎn)E,求線段AE的長(zhǎng).
B.(選修4-2:矩陣與變換)
已知二階矩陣A有特征值λ1=3及其對(duì)應(yīng)的一個(gè)特征向量α1=
1
1
,特征值λ2=-1及其對(duì)應(yīng)的一個(gè)特征向量α2=
1
-1
,求矩陣A的逆矩陣A-1
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系(兩種坐標(biāo)系中取相同的單位長(zhǎng)度),已知點(diǎn)A的直角坐標(biāo)為(-2,6),點(diǎn)B的極坐標(biāo)為(4,
π
2
)
,直線l過(guò)點(diǎn)A且傾斜角為
π
4
,圓C以點(diǎn)B為圓心,4為半徑,試求直線l的參數(shù)方程和圓C的極坐標(biāo)方程.
D.(選修4-5:不等式選講)
設(shè)a,b,c,d都是正數(shù),且x=
a2+b2
y=
c2+d2
.求證:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計(jì)20分.請(qǐng)把答案寫在答題紙的指定區(qū)域內(nèi).
A.(選修4-1:幾何證明選講)
過(guò)圓O外一點(diǎn)P分別作圓的切線和割線交圓于A,B,且PB=7,∠ABP=∠ABC,C是圓上一點(diǎn)使得BC=5,求線段AB的長(zhǎng).
B.(選修4-2:矩陣與變換)
求曲線C:xy=1在矩陣
2
2
-
2
2
2
2
2
2
對(duì)應(yīng)的變換作用下得到的曲線C′的方程.
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
已知曲線C1
x=3cosθ
y=2sinθ
(θ為參數(shù))和曲線C2:ρsin(θ-
π
4
)=
2

(1)將兩曲線方程分別化成普通方程;
(2)求兩曲線的交點(diǎn)坐標(biāo).
D.(選修4-5:不等式選講)
已知|x-a|<
c
4
,|y-b|<
c
6
,求證:|2x-3y-2a+3b|<c.

查看答案和解析>>

選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.
請(qǐng)?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:幾何證明選講如圖,AD是∠BAC的平分線,⊙O過(guò)點(diǎn)A且與BC邊相切于點(diǎn)D,與AB,AC分別交于E,F(xiàn),求證:EF∥BC.
B.選修4-2:矩陣與變換
已知a,b∈R,若矩陣M=[
-1
b
a
3
]所對(duì)應(yīng)的變換把直線l:2x-y=3變換為自身,求a,b的值.
C.選修4-4:坐標(biāo)系與參數(shù)方程將參數(shù)方程
x=2(t+
1
t
)
y=4(t-
1
t
)
t為參數(shù))化為普通方程.
D.選修4-5:已知a,b是正數(shù),求證(a+
1
b
)(2b+
1
2a
)≥92.

查看答案和解析>>

[選做題]在A、B、C、D四小題中只能選做兩題,每小題10分,共計(jì)20分。請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。

A.選修4 - 1:幾何證明選講

如圖,在四邊形ABCD中,△ABC≌△BAD

求證:ABCD。

B.選修4 - 2:矩陣與變換

求矩陣的逆矩陣。

C.選修4 - 4:坐標(biāo)系與參數(shù)方程

已知曲線C的參數(shù)方程為為參數(shù),),求曲線C的普通方程。

D.選修4 - 5:不等式選講

設(shè)>0,求證:。

查看答案和解析>>

一、填空題:本大題共14小題,每小題5分,計(jì)70分.

1.      2.       3.     4.      5.68      6. 4      7. 7      8.

9.     10. 若點(diǎn)P在兩漸近線上的射影分別為、,則必為定值

11.②③          12.         13.1        14.

 

二、解答題:本大題共6小題,計(jì)90分.

15. 解: (Ⅰ)因?yàn)?sub>,∴,則…………………………………………(4分)

  ∴……………………………………………………………………………(7分)

   (Ⅱ)由,得,∴…………………………………………(9分)

   則 …………………………………………(11分)

由正弦定理,得,∴的面積為………………………(14分)

16. (Ⅰ)解:因?yàn)?sub>,,且,

所以……………………………………………………………………………………………(4分)

   又,所以四邊形為平行四邊形,則……………………………………(6分)

   而,故點(diǎn)的位置滿足………………………………………………………(7分)

(Ⅱ)證: 因?yàn)閭?cè)面底面,,且,

所以,則…………………………………………………………………(10分)

   又,且,所以 …………(13分)

   而,所以…………………………………………………(14分)

17. 解:(Ⅰ)因?yàn)?sub>,所以的面積為()………………………(2分)

   設(shè)正方形的邊長(zhǎng)為,則由,得,

解得,則…………………………………………………………………(6分)

   所以,則 ………………(9分)

   (Ⅱ)因?yàn)?sub>,所以……………(13分)

   當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí).所以當(dāng)長(zhǎng)為時(shí),有最小值1…………………(15分)

18. 解:(Ⅰ)設(shè)圓心,則,解得…………………………………(3分)

則圓的方程為,將點(diǎn)的坐標(biāo)代入得,故圓的方程為………(5分)

(Ⅱ)設(shè),則,且…………………………(7分)

==,所以的最小值為(可由線性規(guī)劃或三角代換求得)…(10分)

(Ⅲ)由題意知, 直線和直線的斜率存在,且互為相反數(shù),故可設(shè),

,由,得 ………(11分)

  因?yàn)辄c(diǎn)的橫坐標(biāo)一定是該方程的解,故可得………………………………(13分)

  同理,,所以=

  所以,直線一定平行…………………………………………………………………………(15分)

19. (Ⅰ)解:因?yàn)?sub>…………………………………(2分)

;由,所以上遞增,

上遞減 …………………………………………………………………………………………(4分)

上為單調(diào)函數(shù),則………………………………………………………(5分)

(Ⅱ)證:因?yàn)?sub>上遞增,在上遞減,所以處取得極小值(7分)

 又,所以上的最小值為 …………………………………(9分)

 從而當(dāng)時(shí),,即…………………………………………………………(10分)

(Ⅲ)證:因?yàn)?sub>,所以即為,

   令,從而問(wèn)題轉(zhuǎn)化為證明方程=0

上有解,并討論解的個(gè)數(shù)……………………………………………………………………(12分)

   因?yàn)?sub>,,所以

   ①當(dāng)時(shí),,所以上有解,且只有一解 ……(13分)

②當(dāng)時(shí),,但由于,

所以上有解,且有兩解 …………………………………………………………(14分)

③當(dāng)時(shí),,所以上有且只有一解;

當(dāng)時(shí),,

所以上也有且只有一解…………………………………………………………(15分)

綜上所述, 對(duì)于任意的,總存在,滿足,

且當(dāng)時(shí),有唯一的適合題意;當(dāng)時(shí),有兩個(gè)適合題意…………(16分)

(說(shuō)明:第(Ⅱ)題也可以令,,然后分情況證明在其值域內(nèi),并討論直線與函數(shù)的圖象的交點(diǎn)個(gè)數(shù)即可得到相應(yīng)的的個(gè)數(shù))

20.(Ⅰ)解:由題意得,,所以=……………………(4分)

(Ⅱ)證:令,,則=1………………………………………………(5分)

所以=(1),=(2),

(2)―(1),得=,

化簡(jiǎn)得(3)……………………………………………………………(7分)

(4),(4)―(3)得 …………(9分)

在(3)中令,得,從而為等差數(shù)列 …………………………………………(10分)

(Ⅲ)記,公差為,則=…………………(12分)

,

…………………………………………(14分)

,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立……………(16分)

 

 

數(shù)學(xué)附加題部分

21.A.(幾何證明選講選做題)

解:因?yàn)镻B=PD+BD=1+8=9,=PD?BD=9,PA=3,AE=PA=3,連結(jié)AD,在中,得……(5分)

,所以 …………………………………………………………………(10分)

B.(矩陣與變換選做題)

解: (Ⅰ)設(shè),則有=,=,

所以,解得 …………………………………………………………(4分)

所以M=,從而= ………………………………………………………………(7分)

(Ⅱ)因?yàn)?sub>且m:2,

所以2(x+2y)-(3x+4y)=4,即x+4 =0,這就是直線l的方程 ………………………………………(10分)

C.(坐標(biāo)系與參數(shù)方程選做題)

解:將極坐標(biāo)方程轉(zhuǎn)化為普通方程:……………………………………………(2分)

   可化為…………………………………………………………(5分)

上任取一點(diǎn)A,則點(diǎn)A到直線的距離為

,它的最大值為4 ……………………………(10分)

D.(不等式選講選做題)

證:左=…(5分)

  ……………………(10分)

22.解:以O(shè)A、OB所在直線分別x軸,y軸,以過(guò)O且垂直平面ABCD的直線為z軸,建立空間直角坐標(biāo)系,則,…(2分)

(Ⅰ)設(shè)平面PDB的法向量為

同步練習(xí)冊(cè)答案