題目列表(包括答案和解析)
如圖,,,…,,…是曲線上的點(diǎn),,,…,,…是軸正半軸上的點(diǎn),且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).
(1)寫出、和之間的等量關(guān)系,以及、和之間的等量關(guān)系;
(2)求證:();
(3)設(shè),對所有,恒成立,求實(shí)數(shù)的取值范圍.
【解析】第一問利用有,得到
第二問證明:①當(dāng)時(shí),可求得,命題成立;②假設(shè)當(dāng)時(shí),命題成立,即有則當(dāng)時(shí),由歸納假設(shè)及,
得
第三問
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即
解:(1)依題意,有,,………………4分
(2)證明:①當(dāng)時(shí),可求得,命題成立; ……………2分
②假設(shè)當(dāng)時(shí),命題成立,即有,……………………1分
則當(dāng)時(shí),由歸納假設(shè)及,
得.
即
解得(不合題意,舍去)
即當(dāng)時(shí),命題成立. …………………………………………4分
綜上所述,對所有,. ……………………………1分
(3)
.………………………2分
因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即
.……………2分
由題意,有. 所以,
試判斷下面的證明過程是否正確:
用數(shù)學(xué)歸納法證明:
證明:(1)當(dāng)時(shí),左邊=1,右邊=1
∴當(dāng)時(shí)命題成立.
(2)假設(shè)當(dāng)時(shí)命題成立,即
則當(dāng)時(shí),需證
由于左端等式是一個(gè)以1為首項(xiàng),公差為3,項(xiàng)數(shù)為的等差數(shù)列的前項(xiàng)和,其和為
∴式成立,即時(shí),命題成立.根據(jù)(1)(2)可知,對一切,命題成立.
試判斷下面的證明過程是否正確:
用數(shù)學(xué)歸納法證明:
證明:(1)當(dāng)時(shí),左邊=1,右邊=1
∴當(dāng)時(shí)命題成立.
(2)假設(shè)當(dāng)時(shí)命題成立,即
則當(dāng)時(shí),需證
由于左端等式是一個(gè)以1為首項(xiàng),公差為3,項(xiàng)數(shù)為的等差數(shù)列的前項(xiàng)和,其和為
∴式成立,即時(shí),命題成立.根據(jù)(1)(2)可知,對一切,命題成立.
已知命題及其證明:
(1)當(dāng)時(shí),左邊=1,右邊=所以等式成立;
(2)假設(shè)時(shí)等式成立,即成立,
則當(dāng)時(shí),,所以時(shí)等式也成立。
由(1)(2)知,對任意的正整數(shù)n等式都成立。
經(jīng)判斷以上評述
A.命題、推理都正確 B命題不正確、推理正確
C.命題正確、推理不正確 D命題、推理都不正確
已知函數(shù)。
(1)當(dāng)時(shí),求該函數(shù)的值域;
(2)若對于恒成立,求有取值范圍。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com