數(shù)列是公比為的(q∈R)的等比數(shù)列 查看更多

 

題目列表(包括答案和解析)

設(shè)等比數(shù)列{an}的首項(xiàng)為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項(xiàng);數(shù)列{an}滿足2n2-(t+bn)n+
32
bn=0(t∈R,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)試確定實(shí)數(shù)t的值,使得數(shù)列{bn}為等差數(shù)列.

查看答案和解析>>

設(shè)等比數(shù)列{an}的首項(xiàng)為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項(xiàng);等差數(shù)列{bn}滿足2n2-(t+bn)n+
32
bn
=0(t∈R,n∈N*).
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ) 若對(duì)任意n∈N*,有anbn+1+λanan+1≥bnan+1成立,求實(shí)數(shù)λ的取值范圍;
(Ⅲ)對(duì)每個(gè)正整數(shù)k,在ak和a k+1之間插入bk個(gè)2,得到一個(gè)新數(shù)列{cn}.設(shè)Tn是數(shù)列{cn}的前n項(xiàng)和,試求滿足Tm=2cm+1的所有正整數(shù)m.

查看答案和解析>>

設(shè)等比數(shù)列{an}的首項(xiàng)為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項(xiàng);數(shù)列{an}滿足2n2-(t+bn)n+數(shù)學(xué)公式bn=0(t∈R,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)試確定實(shí)數(shù)t的值,使得數(shù)列{bn}為等差數(shù)列.

查看答案和解析>>

設(shè)等比數(shù)列{an}的首項(xiàng)為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項(xiàng);數(shù)列{an}滿足2n2-(t+bn)n+
3
2
bn=0(t∈R,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)試確定實(shí)數(shù)t的值,使得數(shù)列{bn}為等差數(shù)列.

查看答案和解析>>

已知等比數(shù)列{an}的首項(xiàng)為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項(xiàng);數(shù)列{bn}滿足2n2-(t+bn)n+
32
bn=0(t∈R,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)試確定t的值,使得數(shù)列{bn}為等差數(shù)列;
(3)當(dāng){bn}為等差數(shù)列時(shí),對(duì)任意正整數(shù)k,在ak與ak+1之間插入2共bk個(gè),得到一個(gè)新數(shù)列{cn}.設(shè)Tn是數(shù)列{cn}的前n項(xiàng)和,試求滿足Tn=2cm+1的所有正整數(shù)m的值.

查看答案和解析>>


同步練習(xí)冊(cè)答案