21.求由曲線...所圍成的面積. 查看更多

 

題目列表(包括答案和解析)

(本題滿分18分,第(1)小題4分,第(2)小題6分,第(2)小題8分)

已知雙曲線C:的一個(gè)焦點(diǎn)是,且。

(1)求雙曲線C的方程;

(2)設(shè)經(jīng)過焦點(diǎn)的直線的一個(gè)法向量為,當(dāng)直線與雙曲線C的右支相交于不同的兩點(diǎn)時(shí),求實(shí)數(shù)的取值范圍;并證明中點(diǎn)在曲線上。

(3)設(shè)(2)中直線與雙曲線C的右支相交于兩點(diǎn),問是否存在實(shí)數(shù),使得為銳角?若存在,請(qǐng)求出的范圍;若不存在,請(qǐng)說明理由。

查看答案和解析>>

(本題滿分18分,第(1)小題4分,第(2)小題6分,第(2)小題8分)
已知雙曲線C:的一個(gè)焦點(diǎn)是,且
(1)求雙曲線C的方程;
(2)設(shè)經(jīng)過焦點(diǎn)的直線的一個(gè)法向量為,當(dāng)直線與雙曲線C的右支相交于不同的兩點(diǎn)時(shí),求實(shí)數(shù)的取值范圍;并證明中點(diǎn)在曲線上。
(3)設(shè)(2)中直線與雙曲線C的右支相交于兩點(diǎn),問是否存在實(shí)數(shù),使得為銳角?若存在,請(qǐng)求出的范圍;若不存在,請(qǐng)說明理由。

查看答案和解析>>

(本題滿分18分,第(1)小題4分,第(2)小題6分,第(2)小題8分)

已知雙曲線C:的一個(gè)焦點(diǎn)是,且。

(1)求雙曲線C的方程;

(2)設(shè)經(jīng)過焦點(diǎn)的直線的一個(gè)法向量為,當(dāng)直線與雙曲線C的右支相交于不同的兩點(diǎn)時(shí),求實(shí)數(shù)的取值范圍;并證明中點(diǎn)在曲線上。

(3)設(shè)(2)中直線與雙曲線C的右支相交于兩點(diǎn),問是否存在實(shí)數(shù),使得為銳角?若存在,請(qǐng)求出的范圍;若不存在,請(qǐng)說明理由。

 

查看答案和解析>>

(本題滿分18分,第(1)小題4分,第(2)小題6分,第(2)小題8分)
已知雙曲線C:的一個(gè)焦點(diǎn)是,且。
(1)求雙曲線C的方程;
(2)設(shè)經(jīng)過焦點(diǎn)的直線的一個(gè)法向量為,當(dāng)直線與雙曲線C的右支相交于不同的兩點(diǎn)時(shí),求實(shí)數(shù)的取值范圍;并證明中點(diǎn)在曲線上。
(3)設(shè)(2)中直線與雙曲線C的右支相交于兩點(diǎn),問是否存在實(shí)數(shù),使得為銳角?若存在,請(qǐng)求出的范圍;若不存在,請(qǐng)說明理由。

查看答案和解析>>

(本小題滿分13分)
已知雙曲線的兩條漸近線分別為.

(1)求雙曲線的離心率;
(2)如圖,為坐標(biāo)原點(diǎn),動(dòng)直線分別交直線兩點(diǎn)(分別在第一,四象限),且的面積恒為8,試探究:是否存在總與直線有且只有一個(gè)公共點(diǎn)的雙曲線?若存在,求出雙曲線的方程;若不存在,說明理由.

查看答案和解析>>

一、填空題

1.   2.,    3.    4.2   5.1     6.

7.50   8.  9.-2   10.    11.2     12.

13.2     14.

二、解答題

15[解]:證:設(shè)   ,連 。                    

 ⑴  ∵為菱形,   ∴ 中點(diǎn),又中點(diǎn)。

      ∴                              (5分) 

      又 , (7分)

 ⑵ ∵為菱形,   ∴,              (9分)

   又∵,     (12分)

   又     ∴

         ∴             (14分)

16[解]:解:⑴ ∵ , ∴  ,∴ (1分)

       又                         (3分)

        ∴

        ∴ 。                        (6分)

        ⑵, (8分)

        ∵,∴,

        ∴                (10分)

         

             (13分)

          (當(dāng)時(shí)取“”)   

所以的最大值為,相應(yīng)的    (14分)

17.解:⑴直線的斜率中點(diǎn)坐標(biāo)為 ,

        ∴直線方程為     (4分)

        ⑵設(shè)圓心,則由上得:

                             ①      

        又直徑,,

         

           ②       (7分)

由①②解得

∴圓心                  

∴圓的方程為  或  (9分)                         

 ⑶  ,∴ 當(dāng)△面積為時(shí) ,點(diǎn)到直線的距離為 。                   (12分)

 又圓心到直線的距離為,圓的半徑   

∴圓上共有兩個(gè)點(diǎn)使 △的面積為  .  (14分)

18[解] (1)乙方的實(shí)際年利潤(rùn)為:  .   (5分)

當(dāng)時(shí),取得最大值.

      所以乙方取得最大年利潤(rùn)的年產(chǎn)量 (噸).…………………8分

 (2)設(shè)甲方凈收入為元,則

學(xué)科網(wǎng)(Zxxk.Com) 將代入上式,得:.   (13分)

    又

    令,得

    當(dāng)時(shí),;當(dāng)時(shí),,所以時(shí),取得最大值.

    因此甲方向乙方要求賠付價(jià)格 (元/噸)時(shí),獲最大凈收入.  (16分)

 

19. 解:⑴ 由 ,令 (2分)

   ∴所求距離的最小值即為到直線的距離(4分)

                      (7分)

   ⑵假設(shè)存在正數(shù),令 (9分)

   由得:  

   ∵當(dāng)時(shí), ,∴為減函數(shù);

   當(dāng)時(shí),,∴ 為增函數(shù).

   ∴         (14分)

   ∴

的取值范圍為        (16分)

 

20. 解:⑴由條件得:  ∴  (3分)

     ∵為等比數(shù)列∴(6分)

      ⑵由   得            (8分)

     又   ∴                    (9分)

 ⑶∵

          

(或由

為遞增數(shù)列。                              (11分)

從而       (14分)

                            (16分)

附加題答案

21.         (8分)

22. 解:⑴①當(dāng)時(shí),

       ∴                                                      (2分)

        ②當(dāng)時(shí),

       ∴                                                 (4分)

        ③當(dāng)時(shí),

       ∴                                                (6分)

       綜上該不等式解集為                                   (8分)

23. (1);       (6分)

(2)AB=              (12分)

24. 解: ⑴設(shè)為軌跡上任一點(diǎn),則

                                             (4分)

       化簡(jiǎn)得:   為求。                                (6分)

       ⑵設(shè),

         ∵  ∴                        (8分)

         ∴ 為求                                   (12分)


同步練習(xí)冊(cè)答案