17.已知以點(diǎn)為圓心的圓經(jīng)過(guò)點(diǎn)和.線段的垂直平分線交圓于點(diǎn)和.且.學(xué)科網(wǎng) 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知以點(diǎn)為圓心的圓與軸交于兩點(diǎn),與軸交于、

兩點(diǎn),其中為坐標(biāo)原點(diǎn).

(1)求證:的面積為定值;

(2)設(shè)直線與圓交于點(diǎn),若,求圓的方程.

查看答案和解析>>

(本小題滿分14分)已知以點(diǎn)為圓心的圓經(jīng)過(guò)點(diǎn),線段的垂直平分線交圓于點(diǎn),且。

(1)求直線的方程;⑵求圓的方程;⑶設(shè)點(diǎn)在圓上,試問(wèn)使△的面積等于8的點(diǎn)共有幾個(gè)?證明你的結(jié)論。

查看答案和解析>>

(本小題滿分14分)

已知曲線所圍成的封閉圖形的面積為,曲線的內(nèi)切圓半徑為.記為以曲線與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)是過(guò)橢圓中心的任意弦,是線段的垂直平分線.上異于橢圓中心的點(diǎn).

(1)若為坐標(biāo)原點(diǎn)),當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;

(2)若與橢圓的交點(diǎn),求的面積的最小值.

查看答案和解析>>

(本小題滿分14分)已知橢圓,它的離心率為,直線與以原點(diǎn)為圓心,以橢圓的短半軸長(zhǎng)為半徑的圓相切.⑴求橢圓的方程;⑵設(shè)橢圓的左焦點(diǎn)為,左準(zhǔn)線為,動(dòng)直線垂直于直線,垂足為點(diǎn),線段的垂直平分線交于點(diǎn),求動(dòng)點(diǎn)的軌跡的方程;⑶將曲線向右平移2個(gè)單位得到曲線,設(shè)曲線的準(zhǔn)線為,焦點(diǎn)為,過(guò)作直線交曲線兩點(diǎn),過(guò)點(diǎn)作平行于曲線的對(duì)稱軸的直線,若,試證明三點(diǎn)為坐標(biāo)原點(diǎn))在同一條直線上.

查看答案和解析>>

(本小題滿分14分)

已知點(diǎn)在拋物線上,點(diǎn)到拋物線的焦點(diǎn)F的距離為2,

直線與拋物線交于兩點(diǎn).

(Ⅰ)求拋物線的方程;

(Ⅱ)若以為直徑的圓與軸相切,求該圓的方程;

(Ⅲ)若直線軸負(fù)半軸相交,求面積的最大值.

查看答案和解析>>

一、填空題

1.   2.,    3.    4.2   5.1     6.

7.50   8.  9.-2   10.    11.2     12.

13.2     14.

二、解答題

15[解]:證:設(shè)   ,連 。                    

 ⑴  ∵為菱形,   ∴ 中點(diǎn),又中點(diǎn)。

      ∴                              (5分) 

      又 , (7分)

 ⑵ ∵為菱形,   ∴,              (9分)

   又∵    (12分)

   又     ∴

         ∴             (14分)

16[解]:解:⑴ ∵ , ∴  ,∴ (1分)

       又                         (3分)

        ∴

        ∴ 。                        (6分)

        ⑵, (8分)

        ∵,∴ 。

        ∴                (10分)

         

             (13分)

          (當(dāng)時(shí)取“”)   

所以的最大值為,相應(yīng)的    (14分)

17.解:⑴直線的斜率 ,中點(diǎn)坐標(biāo)為

        ∴直線方程為     (4分)

        ⑵設(shè)圓心,則由上得:

                             ①      

        又直徑,,

         

           ②       (7分)

由①②解得

∴圓心                  

∴圓的方程為  或  (9分)                         

 ⑶  ,∴ 當(dāng)△面積為時(shí) ,點(diǎn)到直線的距離為 。                   (12分)

 又圓心到直線的距離為,圓的半徑   

∴圓上共有兩個(gè)點(diǎn)使 △的面積為  .  (14分)

18[解] (1)乙方的實(shí)際年利潤(rùn)為:  .   (5分)

當(dāng)時(shí),取得最大值.

      所以乙方取得最大年利潤(rùn)的年產(chǎn)量 (噸).…………………8分

 (2)設(shè)甲方凈收入為元,則

學(xué)科網(wǎng)(Zxxk.Com) 將代入上式,得:.   (13分)

    又

    令,得

    當(dāng)時(shí),;當(dāng)時(shí),,所以時(shí),取得最大值.

    因此甲方向乙方要求賠付價(jià)格 (元/噸)時(shí),獲最大凈收入.  (16分)

 

19. 解:⑴ 由 ,令 (2分)

   ∴所求距離的最小值即為到直線的距離(4分)

                      (7分)

   ⑵假設(shè)存在正數(shù),令 (9分)

   由得:  

   ∵當(dāng)時(shí), ,∴為減函數(shù);

   當(dāng)時(shí),,∴ 為增函數(shù).

   ∴         (14分)

   ∴

的取值范圍為        (16分)

 

20. 解:⑴由條件得:  ∴  (3分)

     ∵為等比數(shù)列∴(6分)

      ⑵由   得            (8分)

     又   ∴                    (9分)

 ⑶∵

          

(或由

為遞增數(shù)列。                              (11分)

從而       (14分)

                            (16分)

附加題答案

21.         (8分)

22. 解:⑴①當(dāng)時(shí),

       ∴                                                      (2分)

        ②當(dāng)時(shí),

       ∴                                                 (4分)

        ③當(dāng)時(shí),

       ∴                                                (6分)

       綜上該不等式解集為                                   (8分)

23. (1);       (6分)

(2)AB=              (12分)

24. 解: ⑴設(shè)為軌跡上任一點(diǎn),則

                                             (4分)

       化簡(jiǎn)得:   為求。                                (6分)

       ⑵設(shè),,

         ∵  ∴                        (8分)

         ∴ 為求                                   (12分)


同步練習(xí)冊(cè)答案