又∵平面. ∴平面平面.------9分 查看更多

 

題目列表(包括答案和解析)

如圖9-37,兩條異面直線AB、CD與三個平行平面a 、b g 分別相交于A、E、B,及C、F、D,又AD、BC與平面b 的交點為H、G.求證:EHFG為平行四邊形.

查看答案和解析>>

三棱柱中,側棱與底面垂直,,分別是,的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面

(Ⅲ)求三棱錐的體積.

【解析】第一問利連結,,∵M,N是AB,的中點∴MN//

又∵平面,∴MN//平面      ----------4分

⑵中年∵三棱柱ABC-A1B1C1中,側棱與底面垂直,∴四邊形是正方形.∴.∴.連結,

,又N中的中點,∴

相交于點C,∴MN平面.      --------------9分

⑶中由⑵知MN是三棱錐M-的高.在直角中,,

∴MN=.又.得到結論。

⑴連結,,∵M,N是AB,的中點∴MN//

又∵平面,∴MN//平面   --------4分

⑵∵三棱柱ABC-A1B1C1中,側棱與底面垂直,

∴四邊形是正方形.∴

.連結,

,又N中的中點,∴

相交于點C,∴MN平面.      --------------9分

⑶由⑵知MN是三棱錐M-的高.在直角中,,

∴MN=.又

 

查看答案和解析>>

據中新網2009年4月9日電,日本鹿兒島縣櫻島昭和火山口當地時間9日下午3點31分發(fā)生中等規(guī)模爆發(fā)性噴火,鹿兒島市及周邊飛揚了大量火山灰.火山噴發(fā)停止后,為測量的需要距離噴口中心50米內的圓環(huán)面為第1區(qū)、50米至100米的圓環(huán)面為第2區(qū)、100米至150米的圓環(huán)面為第3區(qū)、…、第50(n-1)米至50n米的圓環(huán)面為第n區(qū),…,現測得第1區(qū)火山灰平均每平方米為1噸、第2區(qū)每平方米的平均重量較第1區(qū)減少2%、第3區(qū)較第2區(qū)又減少2%,…,以此類推.
(1)若第n區(qū)每平方米的重量為an千克,請寫出an的表達式;
(2)第幾區(qū)內的火山灰總重量最大?
(3)該火山這次噴發(fā)出的火山灰的總重量為多少萬噸(π 取3,結果精確到萬噸)?

查看答案和解析>>

據中新網2009年4月9日電,日本鹿兒島縣櫻島昭和火山口當地時間9日下午3點31分發(fā)生中等規(guī)模爆發(fā)性噴火,鹿兒島市及周邊飛揚了大量火山灰.火山噴發(fā)停止后,為測量的需要距離噴口中心50米內的圓環(huán)面為第1區(qū)、50米至100米的圓環(huán)面為第2區(qū)、100米至150米的圓環(huán)面為第3區(qū)、…、第50(n-1)米至50n米的圓環(huán)面為第n區(qū),…,現測得第1區(qū)火山灰平均每平方米為1噸、第2區(qū)每平方米的平均重量較第1區(qū)減少2%、第3區(qū)較第2區(qū)又減少2%,…,以此類推.
(1)若第n區(qū)每平方米的重量為an千克,請寫出an的表達式;
(2)第幾區(qū)內的火山灰總重量最大?
(3)該火山這次噴發(fā)出的火山灰的總重量為多少萬噸(π 取3,結果精確到萬噸)?

查看答案和解析>>

動物中的數學“天才”

  蜜蜂蜂房是嚴格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐形的底,由三個相同的菱形組成.組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅固又省料.蜂房的巢壁厚0.073毫米,誤差極。

  丹頂鶴總是成群結隊遷飛,而且排成“人”字形.“人”字形的角度是110度.更精確地計算還表明“人”字形夾角的一半——即每邊與鶴群前進方向的夾角為54度44分8秒!而金剛石結晶體的角度正好也是54度44分8秒!是巧合還是某種大自然的“默契”?

  蜘蛛結的“八卦”形網,是既復雜又美麗的八角形幾何圖案,人們即使用直尺的圓規(guī)也很難畫出像蜘蛛網那樣勻稱的圖案.

  冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數學,因為球形使身體的表面積最小,從而散發(fā)的熱量也最少.

  真正的數學“天才”是珊瑚蟲.珊瑚蟲在自己的身上記下“日歷”,它們每年在自己的體壁上“刻畫”出365條斑紋,顯然是一天“畫”一條.奇怪的是,古生物學家發(fā)現3億5千萬年前的珊瑚蟲每年“畫”出400幅“水彩畫”.天文學家告訴我們,當時地球一天僅21.9小時,一年不是365天,而是400天.

1.同學們,大自然中有許多有關數學的奧妙,許多現象有意無意地應用著數學,對于這些現象你有什么看法嗎?請你談談你對大自然中的數學現象的認識.

2.把你發(fā)現的大自然中的數學問題告訴你的同學和老師,讓他們也分享一下你認識大自然的樂趣.

查看答案和解析>>


同步練習冊答案