從而得到證明.--------------------------15分 查看更多

 

題目列表(包括答案和解析)

(2013•湖北)如圖,某地質(zhì)隊(duì)自水平地面A,B,C三處垂直向地下鉆探,自A點(diǎn)向下鉆到A1處發(fā)現(xiàn)礦藏,再繼續(xù)下鉆到A2處后下面已無(wú)礦,從而得到在A處正下方的礦層厚度為A1A2=d1.同樣可得在B,C處正下方的礦層厚度分別為B1B2=d2,C1C2=d3,且d1<d2<d3.過(guò)AB,AC的中點(diǎn)M,N且與直線AA2平行的平面截多面體A1B1C1-A2B2C2所得的截面DEFG為該多面體的一個(gè)中截面,其面積記為S
(Ⅰ)證明:中截面DEFG是梯形;
(Ⅱ)在△ABC中,記BC=a,BC邊上的高為h,面積為S.在估測(cè)三角形ABC區(qū)域內(nèi)正下方的礦藏儲(chǔ)量(即多面體A1B1C1-A2B2C2的體積V)時(shí),可用近似公式V=S-h來(lái)估算.已知V=
13
(d1+d2+d3)S,試判斷V與V的大小關(guān)系,并加以證明.

查看答案和解析>>

已知數(shù)列滿足且對(duì)一切,

(Ⅰ)求證:對(duì)一切

(Ⅱ)求數(shù)列通項(xiàng)公式.   

(Ⅲ)求證:

【解析】第一問(wèn)利用,已知表達(dá)式,可以得到,然后得到,從而求證 。

第二問(wèn),可得數(shù)列的通項(xiàng)公式。

第三問(wèn)中,利用放縮法的思想,我們可以得到

然后利用累加法思想求證得到證明。

解:  (1) 證明:

 

 

查看答案和解析>>

已知均為實(shí)數(shù),且,

求證:中至少有一個(gè)大于

【解析】利用反證法的思想進(jìn)行證明即可。首先否定結(jié)論假設(shè)a,b,c都不大于0然后在假設(shè)的前提下,即,得,而,即,與矛盾從而得到矛盾,假設(shè)不成立。

 

查看答案和解析>>

已知正項(xiàng)數(shù)列的前n項(xiàng)和滿足:,

(1)求數(shù)列的通項(xiàng)和前n項(xiàng)和

(2)求數(shù)列的前n項(xiàng)和;

(3)證明:不等式  對(duì)任意的,都成立.

【解析】第一問(wèn)中,由于所以

兩式作差,然后得到

從而得到結(jié)論

第二問(wèn)中,利用裂項(xiàng)求和的思想得到結(jié)論。

第三問(wèn)中,

       

結(jié)合放縮法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正項(xiàng)數(shù)列,∴           ∴ 

又n=1時(shí),

   ∴數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        ,

   ∴不等式  對(duì)任意的都成立.

 

查看答案和解析>>

如圖,某地質(zhì)隊(duì)自水平地面A,B,C三處垂直向地下鉆探,自A點(diǎn)向下鉆到A1處發(fā)現(xiàn)礦藏,再繼續(xù)下鉆到A2處后下面已無(wú)礦,從而得到在A處正下方的礦層厚度為A1A2=d1.同樣可得在B,C處正下方的礦層厚度分別為B1B2=d2,C1C2=d3,且d1<d2<d3.過(guò)AB,AC的中點(diǎn)M,N且與直線AA2平行的平面截多面體A1B1C1-A2B2C2所得的截面DEFG為該多面體的一個(gè)中截面,其面積記為S
(Ⅰ)證明:中截面DEFG是梯形;
(Ⅱ)在△ABC中,記BC=a,BC邊上的高為h,面積為S.在估測(cè)三角形ABC區(qū)域內(nèi)正下方的礦藏儲(chǔ)量(即多面體A1B1C1-A2B2C2的體積V)時(shí),可用近似公式V=S-h來(lái)估算.已知V=(d1+d2+d3)S,試判斷V與V的大小關(guān)系,并加以證明.

查看答案和解析>>


同步練習(xí)冊(cè)答案