又..故. 查看更多

 

題目列表(包括答案和解析)

已知中,,.設,記.

(1)   求的解析式及定義域;

(2)設,是否存在實數,使函數的值域為?若存在,求出的值;若不存在,請說明理由.

【解析】第一問利用(1)如圖,在中,由,,

可得,

又AC=2,故由正弦定理得

 

(2)中

可得.顯然,,則

1當m>0的值域為m+1=3/2,n=1/2

2當m<0,不滿足的值域為;

因而存在實數m=1/2的值域為.

 

查看答案和解析>>

如圖,在南北方向直線延伸湖岸上有一港口A,一汽艇以60 km/h的速度從A出發(fā),30分鐘后因故障而停在湖里.已知汽艇出發(fā)后按直線前進,以后又改成正東方向航行,但不知最初的方向和何時改變方向.現要去營救,請用圖表示營救的區(qū)域.

查看答案和解析>>

在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

(Ⅰ)求角B的大;

(Ⅱ)設=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

【解析】本試題主要考查了向量的數量積和三角函數,以及解三角形的綜合運用

第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根據正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-=3,得k=.

 

查看答案和解析>>

中,已知 ,面積,

(1)求的三邊的長;

(2)設(含邊界)內的一點,到三邊的距離分別是

①寫出所滿足的等量關系;

②利用線性規(guī)劃相關知識求出的取值范圍.

【解析】第一問中利用設中角所對邊分別為

    

又由 

又由 

       又

的三邊長

第二問中,①

依題意有

作圖,然后結合區(qū)域得到最值。

 

查看答案和解析>>

已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點.

(Ⅰ)當直線過右焦點時,求直線的方程;

(Ⅱ)設直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數m的取值范圍.[

【解析】第一問中因為直線經過點,0),所以,得.又因為m>1,所以,故直線的方程為

第二問中設,由,消去x,得,

則由,知<8,且有

由題意知O為的中點.由可知從而,設M是GH的中點,則M().

由題意可知,2|MO|<|GH|,得到范圍

 

查看答案和解析>>


同步練習冊答案