④已知點和直線分別是函數(shù)圖像的一個對稱中心和一條對稱軸.則的最小值為2,其中正確結(jié)論的序號是 .(填上所有正確結(jié)論的序號). 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的定義域為,且。設(shè)點P是函數(shù)
圖像上的任意一點,過點P分別作直線和y軸的垂線,垂足分別為M、N.
(1)求的值;
(2)問:是否為定值?若是,則求出該定值,若不是則說明理由.
(3)設(shè)O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

已知函數(shù)的定義域為,且。設(shè)點P是函數(shù)

 

圖像上的任意一點,過點P分別作直線和y軸的垂線,垂足分別為M、N.

(1)求的值;

(2)問:是否為定值?若是,則求出該定值,若不是則說明理由.

(3)設(shè)O為坐標原點,求四邊形OMPN面積的最小值.

 

 

查看答案和解析>>

已知函數(shù)的定義域為,且。設(shè)點P是函數(shù)
圖像上的任意一點,過點P分別作直線和y軸的垂線,垂足分別為M、N.
(1)求的值;
(2)問:是否為定值?若是,則求出該定值,若不是則說明理由.
(3)設(shè)O為坐標原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

給出下列四個結(jié)論:
①若A、B、C、D是平面內(nèi)四點,則必有;
②“”是“”的充要條件;
③如果函數(shù)對任意的都滿足,則函數(shù)是周期函數(shù);
④已知點和直線分別是函數(shù)圖像的一個對稱中心和一條對稱軸,則的最小值為2;
其中正確結(jié)論的序號是                .(填上所有正確結(jié)論的序號).

查看答案和解析>>

(1)如圖,D是Rt△ABC的斜邊AB上的中點,E和F分別在邊AC和BC上,且ED⊥FD,求證:EF2=AE2+BF2(EF2表示線段EF長度的平方)(嘗試用向量法證明)

(2)已知函數(shù)f(x)=x3-3x圖像上一點P(1,-2),過點P作直線l與y=f(x)圖像相切,但切點異于點P,求直線l的方程.

查看答案和解析>>

一、選擇題:

1.D  2.A 3  B  4.D 5.A 6.D 7.B 8.C 9.A  10.B  11.A  12.B

二、填空題:

13.12          14.    15   3          16.,①②③④    

三、解答題:

17.解:法(1):①∵=(1+cosB,sinB)與=(0,1)所成的角為

與向量=(1,0)所成的角為                                                   

,即                                                   (2分)

而B∈(0,π),∴,∴,∴B=。                               (4分)

②令A(yù)B=c,BC=a,AC=b

∵B=,∴b2=a2+c2-2accosB=a2+c2-ac=,∵a,c>0。             (6分)

∴a2+c2,ac≤     (當且僅當a=c時等號成立)

∴12=a2+c2-ac≥                                           (8分)

∴(a+c)2≤48,∴a+c≤,∴a+b+c≤+=(當且僅當a=c時取等號)

故ΔABC的周長的最大值為。                                                          (10分)

法2:(1)cos<,>=cos

,                                                                                   (2分)

即2cos2B+cosB-1=0,∴cosB=或cosB=-1(舍),而B∈(0,π),∴B=     (4分)

(2)令A(yù)B=c,BC=a,AC=b,ΔABC的周長為,則=a+c+

而a=b?,c=b?                                      (2分)

==

=                                (8分)

∵A∈(0,),∴A-,

當且僅當A=時,。                                         (10分)

 18.解法一:(1)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC

(2)∵AB∥CD,∠BAD=120°,∴∠ADC=60°,又AD=CD=1

∴ΔADC為等邊三角形,且AC=1,取AC的中點O,則DO⊥AC,又PA⊥底面ABCD,

∴PA⊥DO,∴DO⊥平面PAC,過O作OH⊥PC,垂足為H,連DH

由三垂成定理知DH⊥PC,∴∠DHO為二面角D-PC-A的平面角

由OH=,DO=,∴tan∠DHO==2

∴二面角D-PC-A的大小的正切值為2。

(3)設(shè)點B到平面PCD的距離為d,又AB∥平面PCD

∴VA-PCD=VP-ACD,即

  即點B到平面PCD的距離為

19.解:(1)第一和第三次取球?qū)Φ谒拇螣o影響,計第四次摸紅球為事件A

①第二次摸紅球,則第四次摸球時袋中有4紅球概率為

                                                                            (2分)

②第二次摸白球,則第四次摸球時袋中有5紅2白,摸紅球概率為

                                                                           (3分)

∴P(A)=,即第四次恰好摸到紅球的概率為。(6分)(注:無文字說明扣一分)

(2)由題設(shè)可知ξ的所有可能取值為:ξ=0,1,2,3。P(ξ=0)=;

P(ξ=1)=;P(ξ=2)=;

P(ξ=3)=。故隨機變量ξ的分布列為:

ξ

0

1

2

  • <input id="uy6z3"><th id="uy6z3"></th></input>
  • <dl id="uy6z3"><button id="uy6z3"></button></dl>

    (10分)

    P

    ∴Eξ=(個),故Eξ=(個)                                    (1

    20.解:(1)

    故數(shù)列是首項為2,公比為2的等比數(shù)列。

    ,…………………………………………4分

    (2)

    ②―①得,即

    ④―③得,即

    所以數(shù)列是等差數(shù)列……………………9分

    (3)………………………………11分

    設(shè),則

    …………13分

    21.解:(1)設(shè).

    整理得AB:bx-ay-ab=0與原點距離,又

    聯(lián)立上式解得b=1,∴c=2,.∴雙曲線方程為.

    (2)設(shè)C(x1,y1),D(x2,y2)設(shè)CD中點M(x0,y0),

    ,∴|AC|=|AD|,∴AM⊥CD.

    聯(lián)立直線與雙曲線的方程得,整理得(1-3k2)x2-6kmx-3m2-3=0,且.

    ,   

    ,∴AM⊥CD.

    ,整理得,

    且k2>0,,代入中得.

    .

    22.解:(1)∵(x)=3ax2+sinθx-2

    由題設(shè)可知:∴sinθ=1。(2分)

    從而a=,∴f(x)=,而又由f(1)=得,c=

    ∴f(x)=即為所求。                                                     (4分)

    (2)(x)=x2+x-2=(x+2)(x-1)易知f(x)在(-∞,-2)及(1,+∞)上均為增函數(shù),在(-2,1)上為減函數(shù)。

    (i)當m>1時,f(x)在[m,m+3]上遞增。故f(x)max=f(m+3),f(x)min=f(m)

    由f(m+3)-f(m)=(m+3)3+(m+3)2-2(m+3)-=3m2+12m+得-5≤m≤1。這與條件矛盾故舍。                                                                             (6分)

    (ii)當0≤m≤1時,f(x)在[m,1]上遞減,在[1,m+3]上遞增。

    ∴f(x)min=f(1),f(x)max={f(m),f(m+3)}max

    又f(m+3)-f(m)=3m2+12m+=3(m+2)2->0(0≤m≤1),∴f(x)max=f(m+3)

    ∴|f(x1)-f(x2)| ≤f(x)max-f(x)min=f(m+3)-f(1) ≤f(4)-f(1)=恒成立

    故當0≤m≤1原式恒成立。                                                                       (8分)

    綜上:存在m且m∈[0,1]合乎題意。                                                   (9分)

    (3)∵a1∈(0,1,∴a2,故a2>2

    假設(shè)n=k(k≥2,k∈N*)時,ak>2。則ak+1=f(ak)>f(2)=8>2

    故對于一切n(n≥2,n∈N*)均有an>2成立。                                    (11分)

    令g(x)=

    =

    當x∈(0,2)時(x)<0,x∈(2,+∞)時,(x)>0,

    ∴g(x)在x∈[2,+∞時為增函數(shù)。

    而g(2)=8-8ln2>0,即當x∈[2,+∞時,g(x)≥g(2)>0恒成立。

    ∴g(an)>0,(n≥2)也恒成立。即:an+1>8lnan(n≥2)恒成立。

    而當n=1時,a2=8,而8lna1≤0,∴a2>8lna1顯然成立。

    綜上:對一切n∈N*均有an+1>8lnan成立。                             

     

     

     

     


    同步練習(xí)冊答案

  • <pre id="uy6z3"></pre>