題目列表(包括答案和解析)
如圖,以△ABC的邊AB為直徑的⊙O與邊BC交于點D,過點D作DE⊥AC,垂足為E,延長AB、ED交于點F,AD平分∠BAC.(1)求證:EF是⊙O的切線;(2)若AE=3,BF=2,求⊙O的半徑.
【解析】(1)連接OD,利用切線性質(zhì)求證
(2)設(shè)⊙O的半徑為x.通過△ODF∽△AEF,解得x的值
如圖,以△ABC的邊AB為直徑的⊙O與邊BC交于點D,過點D作DE⊥AC,垂足為E,延長AB、ED交于點F,AD平分∠BAC.(1)求證:EF是⊙O的切線;(2)若AE=3,BF=2,求⊙O的半徑.
【解析】(1)連接OD,利用切線性質(zhì)求證
(2)設(shè)⊙O的半徑為x.通過△ODF∽△AEF,解得x的值
在△ABC中,AB=AC,∠ACB =∠ABC,CG⊥BA交BA的延長線于點G,一等腰三角板按如圖27-1所示的位置擺放,該三角尺的直角頂點為F,一條直角邊與AC邊
在一條直線上,另一條直角邊恰好經(jīng)過點B。
(1)在圖24-1中請你通過觀察,測量BF與CG的長度,猜想并寫出BF與CG滿足的數(shù)量關(guān)系,然后說明你的猜想。
(2)當(dāng)三角尺沿AC方向平移到圖24-2所在的位置時,一條直角邊仍與AC邊在同一直線上,另
一條直角邊交BC邊于點D,過點D作DE⊥BA于點E,此時請你通過觀察、測量DE、DF與CG的長度,猜想并寫出DE+DF與CG之間滿足的數(shù)量關(guān)系,然后說明你的猜想。
(提示:過點D作DH⊥CG,可得四邊形EDHG是長方形,而且∠HDC=∠ABC,ED=GH)
(3)當(dāng)三角尺在(2)的基礎(chǔ)上沿AC方向繼續(xù)平移到圖24-3所示的位置(點F在線段AC上,
且點F與點C不重合)時,試猜想DE、DF與CG之間滿足的數(shù)量關(guān)系?(不用說明理由)
【解析】本題利用等腰直角三角形的性質(zhì)及全等三角形的判定和性質(zhì)求解
在△ABC中,AB=AC,∠ACB =∠ABC,CG⊥BA交BA的延長線于點G,一等腰三角板按如圖27-1所示的位置擺放,該三角尺的直角頂點為F,一條直角邊與AC邊
在一條直線上,另一條直角邊恰好經(jīng)過點B。
(1)在圖24-1中請你通過觀察,測量BF與CG的長度,猜想并寫出BF與CG滿足的數(shù)量關(guān)系,然后說明你的猜想。
(2)當(dāng)三角尺沿AC方向平移到圖24-2所在的位置時,一條直角邊仍與AC邊在同一直線上,另
一條直角邊交BC邊于點D,過點D作DE⊥BA于點E,此時請你通過觀察、測量DE、DF與CG的長度,猜想并寫出DE+DF與CG之間滿足的數(shù)量關(guān)系,然后說明你的猜想。
(提示:過點D作DH⊥CG,可得四邊形EDHG是長方形,而且∠HDC=∠ABC,ED=GH)
(3)當(dāng)三角尺在(2)的基礎(chǔ)上沿AC方向繼續(xù)平移到圖24-3所示的位置(點F在線段AC上,
且點F與點C不重合)時,試猜想DE、DF與CG之間滿足的數(shù)量關(guān)系?(不用說明理由)
【解析】本題利用等腰直角三角形的性質(zhì)及全等三角形的判定和性質(zhì)求解
課外興趣小組活動時,老師提出了如下問題:
如圖,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連結(jié)BE(或?qū)ⅰ鰽CD繞點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.
感悟:解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.
(2)問題解決:
受到(1)的啟發(fā),請你證明下面命題:如圖,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連結(jié)EF.
①求證:BE+CF>EF
②若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明.
(3)問題拓展:
如圖,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點作一個60°角,角的兩邊分別交AB、AC于E、F兩點,連結(jié)EF,探索線段BE、CF、EF之間的數(shù)量關(guān)系,并加以證明.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com