由上得出不等式解為 查看更多

 

題目列表(包括答案和解析)

閱讀不等式5x≥4x+1的解法:
解:由5x≥4x+1,兩邊同除以5x可得1≥(
4
5
)x+(
1
5
)x

由于0<
1
5
4
5
<1
,顯然函數(shù)f(x)=(
4
5
x+(
1
5
x在R上為單調(diào)減函數(shù),
f(1)=
4
5
+
1
5
=1
,故當(dāng)x>1時,有f(x)=(
4
5
x+(
1
5
x<f(x)=1
所以不等式的解集為{x|x≥1}.
利用解此不等式的方法解決以下問題:
(1)解不等式:9x>5x+4x
(2)證明:方程5x+12x=13x有唯一解,并求出該解.

查看答案和解析>>

已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點.
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍.
(3)是否存在這樣實數(shù)的a、b、c及t,使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12].若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,說明理由.

查看答案和解析>>

已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點;
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍;
(3)是否存在這樣的實數(shù)a,b,c及t使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12]?若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,請說明理由.

查看答案和解析>>

已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點;
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍;
(3)是否存在這樣的實數(shù)a,b,c及t使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12]?若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,請說明理由.

查看答案和解析>>

已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點.
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍.
(3)是否存在這樣實數(shù)的a、b、c及t,使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12].若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案