(Ⅱ)因為函數(shù)在區(qū)間上單調(diào)遞增.所以導(dǎo)函數(shù)在區(qū)間上的值恒大于或等于零. 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)

(I)求的單調(diào)區(qū)間;

(II)當(dāng)0<a<2時,求函數(shù)在區(qū)間上的最小值.

【解析】第一問定義域為真數(shù)大于零,得到.                            

,則,所以,得到結(jié)論。

第二問中, ().

.                          

因為0<a<2,所以,.令 可得

對參數(shù)討論的得到最值。

所以函數(shù)上為減函數(shù),在上為增函數(shù).

(I)定義域為.           ………………………1分

.                            

,則,所以.  ……………………3分          

因為定義域為,所以.                            

,則,所以

因為定義域為,所以.          ………………………5分

所以函數(shù)的單調(diào)遞增區(qū)間為,

單調(diào)遞減區(qū)間為.                         ………………………7分

(II) ().

.                          

因為0<a<2,所以.令 可得.…………9分

所以函數(shù)上為減函數(shù),在上為增函數(shù).

①當(dāng),即時,            

在區(qū)間上,上為減函數(shù),在上為增函數(shù).

所以.         ………………………10分  

②當(dāng),即時,在區(qū)間上為減函數(shù).

所以.               

綜上所述,當(dāng)時,;

當(dāng)時,

 

查看答案和解析>>

設(shè)函數(shù)

(Ⅰ) 當(dāng)時,求的單調(diào)區(qū)間;

(Ⅱ) 若上的最大值為,求的值.

【解析】第一問中利用函數(shù)的定義域為(0,2),.

當(dāng)a=1時,所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

第二問中,利用當(dāng)時, >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

解:函數(shù)的定義域為(0,2),.

(1)當(dāng)時,所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

(2)當(dāng)時, >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

 

查看答案和解析>>

設(shè)函數(shù),其中為自然對數(shù)的底數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)記曲線在點(其中)處的切線為,軸、軸所圍成的三角形面積為,求的最大值.

【解析】第一問利用由已知,所以,

,得, 所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減; 在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;

第二問中,因為,所以曲線在點處切線為.

切線軸的交點為,與軸的交點為,

因為,所以,  

, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當(dāng)時,有最大值,此時

解:(Ⅰ)由已知,所以, 由,得,  所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減; 

在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;  

即函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.

(Ⅱ)因為,所以曲線在點處切線為.

切線軸的交點為,與軸的交點為

因為,所以,  

, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當(dāng)時,有最大值,此時

所以,的最大值為

 

查看答案和解析>>

已知函數(shù),(),

(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值

(2)當(dāng)時,若函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。

【解析】(1), 

∵曲線與曲線在它們的交點(1,c)處具有公共切線

(2)令,當(dāng)時,

,得

時,的情況如下:

x

+

0

-

0

+

 

 

所以函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為

當(dāng),即時,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上的最大值為,

當(dāng),即時,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上的最大值為

當(dāng),即a>6時,函數(shù)在區(qū)間內(nèi)單調(diào)遞贈,在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增。又因為

所以在區(qū)間上的最大值為。

 

查看答案和解析>>

如圖,,…,,…是曲線上的點,,,…,,…是軸正半軸上的點,且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點).

(1)寫出、之間的等量關(guān)系,以及、之間的等量關(guān)系;

(2)求證:);

(3)設(shè),對所有,恒成立,求實數(shù)的取值范圍.

【解析】第一問利用有,得到

第二問證明:①當(dāng)時,可求得,命題成立;②假設(shè)當(dāng)時,命題成立,即有則當(dāng)時,由歸納假設(shè)及

第三問 

.………………………2分

因為函數(shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即

解:(1)依題意,有,,………………4分

(2)證明:①當(dāng)時,可求得,命題成立; ……………2分

②假設(shè)當(dāng)時,命題成立,即有,……………………1分

則當(dāng)時,由歸納假設(shè)及,

解得不合題意,舍去)

即當(dāng)時,命題成立.  …………………………………………4分

綜上所述,對所有,.    ……………………………1分

(3) 

.………………………2分

因為函數(shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>


同步練習(xí)冊答案