題目列表(包括答案和解析)
已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存過點(diǎn)(2,1)的直線與橢圓相交于不同的兩點(diǎn),滿足?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
【解析】第一問利用設(shè)橢圓的方程為,由題意得
解得
第二問若存在直線滿足條件的方程為,代入橢圓的方程得
.
因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為,
所以
所以.解得。
解:⑴設(shè)橢圓的方程為,由題意得
解得,故橢圓的方程為.……………………4分
⑵若存在直線滿足條件的方程為,代入橢圓的方程得
.
因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為,
所以
所以.
又,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229220620471975_ST.files/image009.png">,即,
所以.
即.
所以,解得.
因?yàn)锳,B為不同的兩點(diǎn),所以k=1/2.
于是存在直線L1滿足條件,其方程為y=1/2x
已知函數(shù) R).
(Ⅰ)若 ,求曲線 在點(diǎn) 處的的切線方程;
(Ⅱ)若 對(duì)任意 恒成立,求實(shí)數(shù)a的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
第一問中,利用當(dāng)時(shí),.
因?yàn)榍悬c(diǎn)為(), 則,
所以在點(diǎn)()處的曲線的切線方程為:
第二問中,由題意得,即即可。
Ⅰ)當(dāng)時(shí),.
,
因?yàn)榍悬c(diǎn)為(), 則,
所以在點(diǎn)()處的曲線的切線方程為:. ……5分
(Ⅱ)解法一:由題意得,即. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,
故在上單調(diào)遞增, ……12分
要使恒成立,則,解得.……15分
解法二: ……7分
(1)當(dāng)時(shí),在上恒成立,
故在上單調(diào)遞增,
即. ……10分
(2)當(dāng)時(shí),令,對(duì)稱軸,
則在上單調(diào)遞增,又
① 當(dāng),即時(shí),在上恒成立,
所以在單調(diào)遞增,
即,不合題意,舍去
②當(dāng)時(shí),, 不合題意,舍去 14分
綜上所述:
設(shè)橢圓 :()的一個(gè)頂點(diǎn)為,,分別是橢圓的左、右焦點(diǎn),離心率 ,過橢圓右焦點(diǎn) 的直線 與橢圓 交于 , 兩點(diǎn).
(1)求橢圓的方程;
(2)是否存在直線 ,使得 ,若存在,求出直線 的方程;若不存在,說明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到,然后求解得到橢圓方程(2)中,對(duì)直線分為兩種情況討論,當(dāng)直線斜率存在時(shí),當(dāng)直線斜率不存在時(shí),聯(lián)立方程組,結(jié)合得到結(jié)論。
解:(1)橢圓的頂點(diǎn)為,即
,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分
(2)由題可知,直線與橢圓必相交.
①當(dāng)直線斜率不存在時(shí),經(jīng)檢驗(yàn)不合題意. --------5分
②當(dāng)直線斜率存在時(shí),設(shè)存在直線為,且,.
由得, ----------7分
,,
=
所以, ----------10分
故直線的方程為或
即或
已知點(diǎn)(),過點(diǎn)作拋物線的切線,切點(diǎn)分別為、(其中).
(Ⅰ)若,求與的值;
(Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓與直線相切,求圓的方程;
(Ⅲ)若直線的方程是,且以點(diǎn)為圓心的圓與直線相切,
求圓面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。
中∵直線與曲線相切,且過點(diǎn),∴,利用求根公式得到結(jié)論先求直線的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值
(Ⅰ)由可得,. ------1分
∵直線與曲線相切,且過點(diǎn),∴,即,
∴,或, --------------------3分
同理可得:,或----------------4分
∵,∴,. -----------------5分
(Ⅱ)由(Ⅰ)知,,,則的斜率,
∴直線的方程為:,又,
∴,即. -----------------7分
∵點(diǎn)到直線的距離即為圓的半徑,即,--------------8分
故圓的面積為. --------------------9分
(Ⅲ)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即, ………10分
∴
,
當(dāng)且僅當(dāng),即,時(shí)取等號(hào).
故圓面積的最小值.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com