題目列表(包括答案和解析)
已知函數(shù),.
(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;
(Ⅱ)若存在實(shí)數(shù),使對任意的,不等式 恒成立.求正整數(shù)的最大值.
【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來分析求解。
第二問中,利用存在實(shí)數(shù),使對任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
(2)不等式 ,即,即.
轉(zhuǎn)化為存在實(shí)數(shù),使對任意的,不等式恒成立.
即不等式在上恒成立.
即不等式在上恒成立.
設(shè),則.
設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.
故在區(qū)間上是減函數(shù)。又
故存在,使得.
當(dāng)時(shí),有,當(dāng)時(shí),有.
從而在區(qū)間上遞增,在區(qū)間上遞減.
又[來源:]
所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有;
故使命題成立的正整數(shù)m的最大值為5
已知函數(shù)f(x)=ex-ax,其中a>0.
(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值
于是對一切恒成立,當(dāng)且僅當(dāng). 、
令則
當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.
故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.
綜上所述,的取值集合為.
(Ⅱ)由題意知,令則
令,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),即
從而,又
所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使即成立.
【點(diǎn)評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.
已知函數(shù)
(1) 若函數(shù)在上單調(diào),求的值;
(2)若函數(shù)在區(qū)間上的最大值是,求的取值范圍.
【解析】第一問,
, 、
第二問中,
由(1)知: 當(dāng)時(shí), 上單調(diào)遞增 滿足條件當(dāng)時(shí),
解: (1) ……3分
, …………….7分
(2)
由(1)知: 當(dāng)時(shí), 上單調(diào)遞增
滿足條件…………..10分
當(dāng)時(shí), 且
…………13分
綜上所述:
已知函數(shù)在處取得極值2.
⑴ 求函數(shù)的解析式;
⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
【解析】第一問中利用導(dǎo)數(shù)
又f(x)在x=1處取得極值2,所以,
所以
第二問中,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得
解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以,即,所以…………6分
⑵ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911311009329402/SYS201207091131543901356936_ST.files/image008.png">,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得, …………9分
當(dāng)f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有
得 …………12分
.綜上所述,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞增,當(dāng)時(shí),f(x)在(m,2m+1)上單調(diào)遞減;則實(shí)數(shù)m的取值范圍是或
已知函數(shù),
(1)求函數(shù)的定義域;
(2)求函數(shù)在區(qū)間上的最小值;
(3)已知,命題p:關(guān)于x的不等式對函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.
【解析】第一問中,利用由 即
第二問中,,得:
,
第三問中,由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時(shí)等號成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時(shí);當(dāng)命題p為假,命題q為真時(shí)分為兩種情況討論即可 。
解:(1)由 即
(2),得:
,
(3)由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時(shí)等號成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以
當(dāng)命題p為真,命題q為假時(shí),
當(dāng)命題p為假,命題q為真時(shí),,
所以
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com