題目列表(包括答案和解析)
產(chǎn)品具有一定的時效性,在這個時效期內(nèi),由市場調(diào)查可知,在不作廣告宣傳且每件獲利a元的前提下,可賣出b件,若作廣告宣傳,廣告費為n千元(n∈N+)時比廣告費為n-1千元時多賣出件.
(1)試寫出銷售量與n的函數(shù)關(guān)系式;
(2)當(dāng)a=10,b=4000時,廠家應(yīng)生產(chǎn)多少件這種產(chǎn)品,做幾千元廣告,才能獲利最大?
17世紀(jì),科學(xué)家們致力于運動的研究,如計算天體的位置,遠(yuǎn)距離航海中對經(jīng)度和緯度的測量,炮彈的速度對于高度和射程的影響等.諸如此類的問題都需要探究兩個變量之間的關(guān)系,并根據(jù)這種關(guān)系對事物的變化規(guī)律作出判斷,如根據(jù)炮彈的速度推測它能達到的高度和射程.這正是函數(shù)產(chǎn)生和發(fā)展的背景.
“function”一詞最初由德國數(shù)學(xué)家萊布尼茲(G.W.Leibniz,1646~1716)在1692年使用.在中國,清代數(shù)學(xué)家李善蘭(1811~1882)在1859年和英國傳教士偉烈亞力合譯的《代徽積拾級》中首次將“function”譯做“函數(shù)”.
萊布尼茲用“函數(shù)”表示隨曲線的變化而改變的幾何量,如坐標(biāo)、切線等.1718年,他的學(xué)生,瑞士數(shù)學(xué)家約翰·伯努利(J.Bernoulli,1667~1748)強調(diào)函數(shù)要用公式表示.后來,數(shù)學(xué)家認(rèn)為這不是判斷函數(shù)的標(biāo)準(zhǔn).只要一些變量變化,另一些變量隨之變化就可以了.所以,1755年,瑞士數(shù)學(xué)家歐拉(L.Euler,1707~1783)將函數(shù)定義為“如果某些變量,以一種方式依賴于另一些變量,我們將前面的變量稱為后面變量的函數(shù)”.
當(dāng)時很多數(shù)學(xué)家對于不用公式表示函數(shù)很不習(xí)慣,甚至抱懷疑態(tài)度.函數(shù)的概念仍然是比較模糊的.
隨著對微積分研究的深入,18世紀(jì)末19世紀(jì)初,人們對函數(shù)的認(rèn)識向前推進了.德國數(shù)學(xué)家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年時提出:“如果對于x的每一個值,y總有一個完全確定的值與之對應(yīng),則y是x的函數(shù)”.這個定義較清楚地說明了函數(shù)的內(nèi)涵.只要有一個法則,使得取值范圍中的每一個值,有一個確定的y和它對應(yīng)就行了,不管這個法則是公式、圖象、表格還是其他形式.19世紀(jì)70年代以后,隨著集合概念的出現(xiàn),函數(shù)概念又進而用更加嚴(yán)謹(jǐn)?shù)募虾蛯?yīng)語言表述,這就是本節(jié)學(xué)習(xí)的函數(shù)概念.
綜上所述可知,函數(shù)概念的發(fā)展與生產(chǎn)、生活以及科學(xué)技術(shù)的實際需要緊密相關(guān),而且隨著研究的深入,函數(shù)概念不斷得到嚴(yán)謹(jǐn)化、精確化的表達,這與我們學(xué)習(xí)函數(shù)的過程是一樣的.
你能以函數(shù)概念的發(fā)展為背景,談?wù)剰某踔械礁咧袑W(xué)習(xí)函數(shù)概念的體會嗎?
1.探尋科學(xué)家發(fā)現(xiàn)問題的過程,對指導(dǎo)我們的學(xué)習(xí)有什么現(xiàn)實意義?
2.萊布尼茲、狄利克雷等科學(xué)家有哪些品質(zhì)值得我們學(xué)習(xí)?
甲流水線 | 乙流水線 | 合計 | |
合格品 | a= | b= | |
不合格品 | c= | d= | |
合 計 | n= |
P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
n(ad-bc)2 |
(a+b)(c+d)(a+c)(b+d) |
日需求量n | 150 | 160 | 170 | 180 | 190 | 200 |
天數(shù) | 17 | 23 | 23 | 14 | 13 | 10 |
某產(chǎn)品的三個質(zhì)量指標(biāo)分別為x,y,z,用綜合指標(biāo)S=x+y+z評價該產(chǎn)品的等級.若S≤4,則該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:
產(chǎn)品編號 | A1 | A2 | A3 | A4 | A5 |
質(zhì)量指標(biāo)(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
|
|
|
|
|
|
產(chǎn)品編號 | A6 | A7 | A8 | A9 | A10 |
質(zhì)量指標(biāo)(x,y,z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(1)利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;
(2)在該樣本的一等品中,隨機抽取2件產(chǎn)品,
①用產(chǎn)品編號列出所有可能的結(jié)果;
②設(shè)事件B為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)S都等于4”,求事件B發(fā)生的概率.
一、選擇題(本大題共8小題,每小題5分,共40分)
1.D 2.B 3.D 4.A 5.C 6.B 7.D 8.C
二、填空題(本大題共6小題,每小題5分,共30分)
9. () 10.12000 11.4 12.144 13.
14. 15.
三、解答題(本大題共6小題,共80分)
16.(本小題滿分12分)
解:(Ⅰ)…………………………………2分
……………………………………………………3分
………………………………………………………5分
∴函數(shù)的最小正周期…………………………………………6分
(Ⅱ)當(dāng)時,………………………………………8分
∴當(dāng)即時,函數(shù)單調(diào)遞增……………………10分
當(dāng)即時,函數(shù)單調(diào)遞減……………………12分
17.(本小題滿分12分)
解:∵作品數(shù)量共有50件,∴…………①……………………2分
(Ⅰ)從表中可以看出,“藝術(shù)與創(chuàng)新為4分且功能與實用為3分”的作品數(shù)量為6件,
∴“藝術(shù)與創(chuàng)新為4分且功能與實用為3分”的概率為……………4分
(Ⅱ)由表可知“功能與實用”得分有1分、2分、3分、4分、5分五個等級,且每個等級分別有5件,件,15件,15件,年。
∴“功能與實用”得分的分布列為:
1
2
3
4
5
…………………………………8分
又∵“功能與實用”得分的數(shù)學(xué)期望為,
∴
與①式聯(lián)立可解得:,……………………12分
18.(本小題滿分14分)
解:(Ⅰ)在中,,,∴,……1分
在中,,,∴,…………2分
∴…………4分
則…………………………………………5分
(Ⅱ)∵平面,∴…………………………6分
又,,
∴平面………………………7分
∵、分別為、中點,
∴………………………8分
∴平面………………………9分
∵平面,∴平面平面
………………………10分
(Ⅲ)取的中點,連結(jié),則,
∴平面,過作于,
連接,則為二面角的平面角。
…………………………12分
∵為的中點,,,
∴,又,
∴,故
即三面角的大小為…………………………14分
19.(本小題滿分14分)
解:由函數(shù)得,………………3分
(Ⅰ) 若為區(qū)間上的“凸函數(shù)”,則有在區(qū)間上恒成立,由二次函數(shù)的圖像,當(dāng)且僅當(dāng)
,
即. …………………………………………………7分
(Ⅱ)當(dāng)時,恒成立當(dāng)時,恒成立.……………………………………………………………………………8分
當(dāng)時,顯然成立。 …………………………………9分
當(dāng),
∵的最小值是.
∴.
從而解得 …………………………………………………………………11分
當(dāng),
∵的最大值是,∴,
從而解得. ………………………………………………………………13分
綜上可得,從而 ………………………………14分
20.(本小題滿分14分)
解:(Ⅰ)∵拋物線的焦點為(),………………………1分
∴………………………………………………………………………2分
∴,所求方程為………………………………………4分
(Ⅱ)設(shè)動圓圓心為,(其中),、的坐標(biāo)分別為,
因為圓過,故設(shè)圓的方程……………6分
∵、是圓和軸的交點
∴令得:…………………………………………………8分
則,
…………………10分
又∵圓心在拋物線上
∴ …………………………………………………………………11分
∴………………………………….12分
∴當(dāng)時,(定值). ……………………………………………14分
21.(本小題滿分14分)
解:(Ⅰ)若為等比數(shù)列,則存在,使
對成立。…………………2分
由已知:,代入上式,整理得
………①……………4分
∵①式對成立,
∴解得……………………………………5分
∴當(dāng),時,數(shù)列是公比為2的等比數(shù)列…………6分
(Ⅱ)證明:由(Ⅰ)得:,即
所以……………………………8分
∵…………………………9分
時,
…………………………11分
現(xiàn)證:()
證法1:
當(dāng)時,,
而,,故時成立!12分
時,由
且得,,∴…………………14分
證法2:
時
個
∴……………………………………14分
證法3:
(1)時,
,故時不等式成立……………………12分
(2)假設(shè)()
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com