題目列表(包括答案和解析)
汕頭二中擬建一座長米,寬米的長方形體育館.按照建筑要求,每隔米(,為正常數(shù))需打建一個樁位,每個樁位需花費萬元(樁位視為一點且打在長方形的邊上),樁位之間的米墻面需花萬元,在不計地板和天花板的情況下,當為何值時,所需總費用最少?
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。先求需打個樁位.再求解墻面所需費用為:,最后表示總費用,利用導(dǎo)數(shù)判定單調(diào)性,求解最值。
解:由題意可知,需打個樁位. …………………2分
墻面所需費用為:,……4分
∴所需總費用()…7分
令,則
當時,;當時,.
∴當時,取極小值為.而在內(nèi)極值點唯一,所以.∴當時,(萬元),即每隔3米打建一個樁位時,所需總費用最小為1170萬元.
已知點(),過點作拋物線的切線,切點分別為、(其中).
(Ⅰ)若,求與的值;
(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓與直線相切,求圓的方程;
(Ⅲ)若直線的方程是,且以點為圓心的圓與直線相切,
求圓面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運用。直線與圓的位置關(guān)系的運用。
中∵直線與曲線相切,且過點,∴,利用求根公式得到結(jié)論先求直線的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值
(Ⅰ)由可得,. ------1分
∵直線與曲線相切,且過點,∴,即,
∴,或, --------------------3分
同理可得:,或----------------4分
∵,∴,. -----------------5分
(Ⅱ)由(Ⅰ)知,,,則的斜率,
∴直線的方程為:,又,
∴,即. -----------------7分
∵點到直線的距離即為圓的半徑,即,--------------8分
故圓的面積為. --------------------9分
(Ⅲ)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即, ………10分
∴
,
當且僅當,即,時取等號.
故圓面積的最小值.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com