題目列表(包括答案和解析)
把函數(shù)的圖象按向量平移得到函數(shù)的圖象.
(1)求函數(shù)的解析式; (2)若,證明:.
【解析】本試題主要考查了函數(shù) 平抑變換和運(yùn)用函數(shù)思想證明不等式。第一問中,利用設(shè)上任意一點(diǎn)為(x,y)則平移前對(duì)應(yīng)點(diǎn)是(x+1,y-2)代入 ,便可以得到結(jié)論。第二問中,令,然后求導(dǎo),利用最小值大于零得到。
(1)解:設(shè)上任意一點(diǎn)為(x,y)則平移前對(duì)應(yīng)點(diǎn)是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分
(2) 證明:令,……6分
則……8分
,∴,∴在上單調(diào)遞增.……10分
故,即
(本小題滿分12分)已知函數(shù)
(I)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;
(II)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍.
(Ⅲ)求證:解:(1),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052512313679685506/SYS201205251234077812428021_ST.files/image007.png">,則令,
則,
當(dāng)時(shí),;當(dāng)時(shí),
在(0,1)上單調(diào)遞增,在上單調(diào)遞減,
即當(dāng)時(shí),函數(shù)取得極大值. (3分)
函數(shù)在區(qū)間上存在極值,
,解得 (4分)
(2)不等式,即
令
(6分)
令,則,
,即在上單調(diào)遞增, (7分)
,從而,故在上單調(diào)遞增, (7分)
(8分)
(3)由(2)知,當(dāng)時(shí),恒成立,即,
令,則, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
(本小題滿分12分)
已知ABC的三個(gè)頂點(diǎn)的直角坐標(biāo)分別為A(3,4)、B(0,0)、C(c,0)
若c=5,求sin∠A的值;
若∠A為鈍角,求c的取值范圍;
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對(duì)任意的有≤成立,求實(shí)數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">
由,得
當(dāng)x變化時(shí),,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即
令,得
①當(dāng)時(shí),,在上恒成立。因此在上單調(diào)遞減.從而對(duì)于任意的,總有,即在上恒成立,故符合題意.
②當(dāng)時(shí),,對(duì)于,,故在上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.
當(dāng)時(shí),
在(2)中取,得 ,
從而
所以有
綜上,,
函數(shù)是定義在上的奇函數(shù),且。
(1)求實(shí)數(shù)a,b,并確定函數(shù)的解析式;
(2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)
【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運(yùn)用。第一問中,利用函數(shù)是定義在上的奇函數(shù),且。
解得,
(2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。
(3)中,由2知,單調(diào)減區(qū)間為,并由此得到當(dāng),x=-1時(shí),,當(dāng)x=1時(shí),
解:(1)是奇函數(shù),。
即,,………………2分
,又,,,
(2)任取,且,
,………………6分
,
,,,,
在(-1,1)上是增函數(shù)。…………………………………………8分
(3)單調(diào)減區(qū)間為…………………………………………10分
當(dāng),x=-1時(shí),,當(dāng)x=1時(shí),。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com