(Ⅱ)若∠ABC=.求二面角D1-AC-B1的大小, 查看更多

 

題目列表(包括答案和解析)

 如圖,在直三棱柱ABCA1B1C1中,已知BC=1,BB1=2,AB⊥平面BB1C1C.

(1)求直線C1B與底面ABC所成角的正切值;

(2)在棱CC1(不包括端點C、C1)上確定一點E的位置,使EAEB1(要求說明理由);

(3)在(2)的條件下,若AB=,求二面角AEB1A1的大小.

 

 

 

 

 

 

 

 

 

查看答案和解析>>

 如圖,在直三棱柱ABCA1B1C1中,已知BC=1,BB1=2,AB⊥平面BB1C1C.

(1)求直線C1B與底面ABC所成角的正切值;

(2)在棱CC1(不包括端點C、C1)上確定一點E的位置,使EAEB1(要求說明理由);

(3)在(2)的條件下,若AB=,求二面角AEB1A1的大。

 

 

 

 

 

 

 

查看答案和解析>>

如圖,四棱錐PABCD中,底面ABCD為矩形,PA⊥底面ABCD,PAAB,點E是棱PB的中點.

(Ⅰ) 求直線AD與平面PBC的距離;

(Ⅱ) 若AD,求二面角AECD的平面角的余弦值.

 

查看答案和解析>>

如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB>1,點E在棱AB上移動,小螞蟻從點A沿長方體的表面爬到點C1,所爬的最短路程為2

(1)求證:D1E⊥A1D;

(2)求AB的長度;

(3)若EB=時,求二面角D1-EC-D的大小.

 

查看答案和解析>>

已知在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D為AB的中點.

(Ⅰ)求異面直線CC1和AB的距離;

(Ⅱ)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.

 

查看答案和解析>>

第1卷

一、選擇題

1.D    2.B    3.B    4.C    5.A    6.C    7.B    8.A    9.D    10.C    11.A    12.A

第Ⅱ卷

二、填空題

13.

14.(理)(文)3x+3y-2=0

15.(-3,0)(3,+∞)

16.②④

三、解答題

17.(Ⅰ)這批食品不能出廠的概率是:

(Ⅱ)五項指標全部檢驗完畢,這批食品可以出廠的概率是:

五項指標全部檢驗完畢,這批食品不能出廠的概率是:

由互斥事件有一個發(fā)生的概率加法公式可知,五項指標全部檢驗完畢,

才能確定這批食品出廠與否的概率是:

18.(Ⅰ)設f(x)=ax+b(a≠0),則c的方程為:

      ①

由點(2,)在曲線c上,得1=(2一b).      ②

由①②解得a=b=1,∴曲線c的方程為y=x-1.

(Ⅱ)由,點(n+1,)底曲線c上,有=n

于是?…?,

注意到a1=1,所以an=(n-1)!

(Ⅲ)

19.(甲)(Ⅰ)選取DA1、DC、DD1,分別為Ox、Oy、Oy軸建立空間直角坐標,易知E(0,0,),F(,,0),B1(1,1,1),C(0,1,0),

,

=0,

(Ⅱ)G(0,,-1),Cl(0,1,1),

(Ⅲ),

(乙)

(Ⅰ)用反證法易證B1D1與A1D不垂直.

(Ⅱ)由余弦有cos∠AC1D1=

設AC1=x,則

單調遞增.

(Ⅲ)∵A1B1∥C1D1,∴∠AC1D1為異面直線AC1與A1B1所成角.

由余弦定理,有

設AC1=x,則

故AC1與A1B1所成角的取值范圍是

20.(理)解:

(Ⅰ)∵f(x)與g(x)的圖像關于直線x-1=0對稱,

∴f(x)=g(2-x).

,

f(x)=g(2一x)=-ax+2x3

又f(x)是偶函數,∴

f(x)=f(-x)=ax一2x3

(Ⅱ)f(x)=a-6x2,∵f(x)為[0,1]上的增函數.

∴f'(x)=a-6x2≥0,

∴a≥6x2上,恒成立.

∵x[0,1)時,6x2≤6,∴a≥6.

即a的取值范圍是[6,+∞).

(Ⅲ)當a在[0,1)上的情形.

由f'(x)=0,得得a=6.此時x=1

∴當a(-6,6)時,f(x)的最大值不可能是4.

(文)

(1)

(2)根據題意可得

整理得(ax-a)(ax+a-1)<0.

由于a>1,所以x<1.

21.解:

(Ⅰ)∵|PF1|一|PF2|=2a,又|PF1|=3|PF2|.

∴|PF1|=3a,|PF2|=a.

設F1(-c,0),F2(c,0),P(x0,y0),由得3a=ex0+a,則x0=

∵P在雙曲線右支上,∴x1≥a,即≥a,解得

1<e≤2.

∴e的最大值為2,此時

∴漸近線方程為,

(Ⅱ)

∴b2=C2-a2=6.

∴雙曲線方程為

22.(理)解:

(1)可求得f(x)=

由f(x)<f(1)得

整理得(ax-a)(ax+a―1)<0.

由于a>l,所以x<1.

(Ⅱ)

,

,

,

即f(2)>2f(1).

即f(3)>3f(1).

(Ⅲ)更一般地,有:f(n)>nf(1)  (n *,n≥2).

用數學歸納法證明,

①由(Ⅱ)知n=2,3時,不等式成立.

②假設n=k時,不等式成立,即f(k)>kf(1).

這說明n=k+1時,不等式也成立.

由①②可知,對于一切,均有f(x)>nf(1).

(文)解:

(Ⅰ)∵f(x)與g(x)的圖像關于直線x-1=0對稱.

∴f(x)=g(2-x),當x[-1,0]時,2一x[2,3]

f(x)=g(2一x)=一ax+2x3

又∵f(x)是偶函數,∴x[0,1]時,一x[一1,0]

f(x)=f(一x)=ax一2x3

(Ⅱ)上的增函數.

上恒成立

即a的取值范圍是[6,+∞].

(Ⅲ)只考慮在[0,1)上的情形.

∴當的最大值不可能是4.


同步練習冊答案