題目列表(包括答案和解析)
第八部分 靜電場
第一講 基本知識介紹
在奧賽考綱中,靜電學(xué)知識點數(shù)目不算多,總數(shù)和高考考綱基本相同,但在個別知識點上,奧賽的要求顯然更加深化了:如非勻強電場中電勢的計算、電容器的連接和靜電能計算、電介質(zhì)的極化等。在處理物理問題的方法上,對無限分割和疊加原理提出了更高的要求。
如果把靜電場的問題分為兩部分,那就是電場本身的問題、和對場中帶電體的研究,高考考綱比較注重第二部分中帶電粒子的運動問題,而奧賽考綱更注重第一部分和第二部分中的靜態(tài)問題。也就是說,奧賽關(guān)注的是電場中更本質(zhì)的內(nèi)容,關(guān)注的是縱向的深化和而非橫向的綜合。
一、電場強度
1、實驗定律
a、庫侖定律
內(nèi)容;
條件:⑴點電荷,⑵真空,⑶點電荷靜止或相對靜止。事實上,條件⑴和⑵均不能視為對庫侖定律的限制,因為疊加原理可以將點電荷之間的靜電力應(yīng)用到一般帶電體,非真空介質(zhì)可以通過介電常數(shù)將k進行修正(如果介質(zhì)分布是均勻和“充分寬廣”的,一般認為k′= k /εr)。只有條件⑶,它才是靜電學(xué)的基本前提和出發(fā)點(但這一點又是常常被忽視和被不恰當(dāng)?shù)亍熬C合應(yīng)用”的)。
b、電荷守恒定律
c、疊加原理
2、電場強度
a、電場強度的定義
電場的概念;試探電荷(檢驗電荷);定義意味著一種適用于任何電場的對電場的檢測手段;電場線是抽象而直觀地描述電場有效工具(電場線的基本屬性)。
b、不同電場中場強的計算
決定電場強弱的因素有兩個:場源(帶電量和帶電體的形狀)和空間位置。這可以從不同電場的場強決定式看出——
⑴點電荷:E = k
結(jié)合點電荷的場強和疊加原理,我們可以求出任何電場的場強,如——
⑵均勻帶電環(huán),垂直環(huán)面軸線上的某點P:E = ,其中r和R的意義見圖7-1。
⑶均勻帶電球殼
內(nèi)部:E內(nèi) = 0
外部:E外 = k ,其中r指考察點到球心的距離
如果球殼是有厚度的的(內(nèi)徑R1 、外徑R2),在殼體中(R1<r<R2):
E = ,其中ρ為電荷體密度。這個式子的物理意義可以參照萬有引力定律當(dāng)中(條件部分)的“剝皮法則”理解〔即為圖7-2中虛線以內(nèi)部分的總電量…〕。
⑷無限長均勻帶電直線(電荷線密度為λ):E =
⑸無限大均勻帶電平面(電荷面密度為σ):E = 2πkσ
二、電勢
1、電勢:把一電荷從P點移到參考點P0時電場力所做的功W與該電荷電量q的比值,即
U =
參考點即電勢為零的點,通常取無窮遠或大地為參考點。
和場強一樣,電勢是屬于場本身的物理量。W則為電荷的電勢能。
2、典型電場的電勢
a、點電荷
以無窮遠為參考點,U = k
b、均勻帶電球殼
以無窮遠為參考點,U外 = k ,U內(nèi) = k
3、電勢的疊加
由于電勢的是標量,所以電勢的疊加服從代數(shù)加法。很顯然,有了點電荷電勢的表達式和疊加原理,我們可以求出任何電場的電勢分布。
4、電場力對電荷做功
WAB = q(UA - UB)= qUAB
三、靜電場中的導(dǎo)體
靜電感應(yīng)→靜電平衡(狹義和廣義)→靜電屏蔽
1、靜電平衡的特征可以總結(jié)為以下三層含義——
a、導(dǎo)體內(nèi)部的合場強為零;表面的合場強不為零且一般各處不等,表面的合場強方向總是垂直導(dǎo)體表面。
b、導(dǎo)體是等勢體,表面是等勢面。
c、導(dǎo)體內(nèi)部沒有凈電荷;孤立導(dǎo)體的凈電荷在表面的分布情況取決于導(dǎo)體表面的曲率。
2、靜電屏蔽
導(dǎo)體殼(網(wǎng)罩)不接地時,可以實現(xiàn)外部對內(nèi)部的屏蔽,但不能實現(xiàn)內(nèi)部對外部的屏蔽;導(dǎo)體殼(網(wǎng)罩)接地后,既可實現(xiàn)外部對內(nèi)部的屏蔽,也可實現(xiàn)內(nèi)部對外部的屏蔽。
四、電容
1、電容器
孤立導(dǎo)體電容器→一般電容器
2、電容
a、定義式 C =
b、決定式。決定電容器電容的因素是:導(dǎo)體的形狀和位置關(guān)系、絕緣介質(zhì)的種類,所以不同電容器有不同的電容
⑴平行板電容器 C = = ,其中ε為絕對介電常數(shù)(真空中ε0 = ,其它介質(zhì)中ε= ),εr則為相對介電常數(shù),εr = 。
⑵柱形電容器:C =
⑶球形電容器:C =
3、電容器的連接
a、串聯(lián) = +++ … +
b、并聯(lián) C = C1 + C2 + C3 + … + Cn
4、電容器的能量
用圖7-3表征電容器的充電過程,“搬運”電荷做功W就是圖中陰影的面積,這也就是電容器的儲能E ,所以
E = q0U0 = C =
電場的能量。電容器儲存的能量究竟是屬于電荷還是屬于電場?正確答案是后者,因此,我們可以將電容器的能量用場強E表示。
對平行板電容器 E總 = E2
認為電場能均勻分布在電場中,則單位體積的電場儲能 w = E2 。而且,這以結(jié)論適用于非勻強電場。
五、電介質(zhì)的極化
1、電介質(zhì)的極化
a、電介質(zhì)分為兩類:無極分子和有極分子,前者是指在沒有外電場時每個分子的正、負電荷“重心”彼此重合(如氣態(tài)的H2 、O2 、N2和CO2),后者則反之(如氣態(tài)的H2O 、SO2和液態(tài)的水硝基笨)
b、電介質(zhì)的極化:當(dāng)介質(zhì)中存在外電場時,無極分子會變?yōu)橛袠O分子,有極分子會由原來的雜亂排列變成規(guī)則排列,如圖7-4所示。
2、束縛電荷、自由電荷、極化電荷與宏觀過剩電荷
a、束縛電荷與自由電荷:在圖7-4中,電介質(zhì)左右兩端分別顯現(xiàn)負電和正電,但這些電荷并不能自由移動,因此稱為束縛電荷,除了電介質(zhì),導(dǎo)體中的原子核和內(nèi)層電子也是束縛電荷;反之,能夠自由移動的電荷稱為自由電荷。事實上,導(dǎo)體中存在束縛電荷與自由電荷,絕緣體中也存在束縛電荷和自由電荷,只是它們的比例差異較大而已。
b、極化電荷是更嚴格意義上的束縛電荷,就是指圖7-4中電介質(zhì)兩端顯現(xiàn)的電荷。而宏觀過剩電荷是相對極化電荷來說的,它是指可以自由移動的凈電荷。宏觀過剩電荷與極化電荷的重要區(qū)別是:前者能夠用來沖放電,也能用儀表測量,但后者卻不能。
第二講 重要模型與專題
一、場強和電場力
【物理情形1】試證明:均勻帶電球殼內(nèi)部任意一點的場強均為零。
【模型分析】這是一個疊加原理應(yīng)用的基本事例。
如圖7-5所示,在球殼內(nèi)取一點P ,以P為頂點做兩個對頂?shù)、頂角很小的錐體,錐體與球面相交得到球面上的兩個面元ΔS1和ΔS2 ,設(shè)球面的電荷面密度為σ,則這兩個面元在P點激發(fā)的場強分別為
ΔE1 = k
ΔE2 = k
為了弄清ΔE1和ΔE2的大小關(guān)系,引進錐體頂部的立體角ΔΩ ,顯然
= ΔΩ =
所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它們的方向是相反的,故在P點激發(fā)的合場強為零。
同理,其它各個相對的面元ΔS3和ΔS4 、ΔS5和ΔS6 … 激發(fā)的合場強均為零。原命題得證。
【模型變換】半徑為R的均勻帶電球面,電荷的面密度為σ,試求球心處的電場強度。
【解析】如圖7-6所示,在球面上的P處取一極小的面元ΔS ,它在球心O點激發(fā)的場強大小為
ΔE = k ,方向由P指向O點。
無窮多個這樣的面元激發(fā)的場強大小和ΔS激發(fā)的完全相同,但方向各不相同,它們矢量合成的效果怎樣呢?這里我們要大膽地預(yù)見——由于由于在x方向、y方向上的對稱性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求
ΔEz = ΔEcosθ= k ,而且ΔScosθ為面元在xoy平面的投影,設(shè)為ΔS′
所以 ΣEz = ΣΔS′
而 ΣΔS′= πR2
【答案】E = kπσ ,方向垂直邊界線所在的平面。
〖學(xué)員思考〗如果這個半球面在yoz平面的兩邊均勻帶有異種電荷,面密度仍為σ,那么,球心處的場強又是多少?
〖推薦解法〗將半球面看成4個球面,每個球面在x、y、z三個方向上分量均為 kπσ,能夠?qū)ΨQ抵消的將是y、z兩個方向上的分量,因此ΣE = ΣEx …
〖答案〗大小為kπσ,方向沿x軸方向(由帶正電的一方指向帶負電的一方)。
【物理情形2】有一個均勻的帶電球體,球心在O點,半徑為R ,電荷體密度為ρ ,球體內(nèi)有一個球形空腔,空腔球心在O′點,半徑為R′,= a ,如圖7-7所示,試求空腔中各點的場強。
【模型分析】這里涉及兩個知識的應(yīng)用:一是均勻帶電球體的場強定式(它也是來自疊加原理,這里具體用到的是球體內(nèi)部的結(jié)論,即“剝皮法則”),二是填補法。
將球體和空腔看成完整的帶正電的大球和帶負電(電荷體密度相等)的小球的集合,對于空腔中任意一點P ,設(shè) = r1 , = r2 ,則大球激發(fā)的場強為
E1 = k = kρπr1 ,方向由O指向P
“小球”激發(fā)的場強為
E2 = k = kρπr2 ,方向由P指向O′
E1和E2的矢量合成遵從平行四邊形法則,ΣE的方向如圖。又由于矢量三角形PE1ΣE和空間位置三角形OP O′是相似的,ΣE的大小和方向就不難確定了。
【答案】恒為kρπa ,方向均沿O → O′,空腔里的電場是勻強電場。
〖學(xué)員思考〗如果在模型2中的OO′連線上O′一側(cè)距離O為b(b>R)的地方放一個電量為q的點電荷,它受到的電場力將為多大?
〖解說〗上面解法的按部就班應(yīng)用…
〖答〗πkρq〔?〕。
二、電勢、電量與電場力的功
【物理情形1】如圖7-8所示,半徑為R的圓環(huán)均勻帶電,電荷線密度為λ,圓心在O點,過圓心跟環(huán)面垂直的軸線上有P點, = r ,以無窮遠為參考點,試求P點的電勢UP 。
【模型分析】這是一個電勢標量疊加的簡單模型。先在圓環(huán)上取一個元段ΔL ,它在P點形成的電勢
ΔU = k
環(huán)共有段,各段在P點形成的電勢相同,而且它們是標量疊加。
【答案】UP =
〖思考〗如果上題中知道的是環(huán)的總電量Q ,則UP的結(jié)論為多少?如果這個總電量的分布不是均勻的,結(jié)論會改變嗎?
〖答〗UP = ;結(jié)論不會改變。
〖再思考〗將環(huán)換成半徑為R的薄球殼,總電量仍為Q ,試問:(1)當(dāng)電量均勻分布時,球心電勢為多少?球內(nèi)(包括表面)各點電勢為多少?(2)當(dāng)電量不均勻分布時,球心電勢為多少?球內(nèi)(包括表面)各點電勢為多少?
〖解說〗(1)球心電勢的求解從略;
球內(nèi)任一點的求解參看圖7-5
ΔU1 = k= k·= kσΔΩ
ΔU2 = kσΔΩ
它們代數(shù)疊加成 ΔU = ΔU1 + ΔU2 = kσΔΩ
而 r1 + r2 = 2Rcosα
所以 ΔU = 2RkσΔΩ
所有面元形成電勢的疊加 ΣU = 2RkσΣΔΩ
注意:一個完整球面的ΣΔΩ = 4π(單位:球面度sr),但作為對頂?shù)腻F角,ΣΔΩ只能是2π ,所以——
ΣU = 4πRkσ= k
(2)球心電勢的求解和〖思考〗相同;
球內(nèi)任一點的電勢求解可以從(1)問的求解過程得到結(jié)論的反證。
〖答〗(1)球心、球內(nèi)任一點的電勢均為k ;(2)球心電勢仍為k ,但其它各點的電勢將隨電量的分布情況的不同而不同(內(nèi)部不再是等勢體,球面不再是等勢面)。
【相關(guān)應(yīng)用】如圖7-9所示,球形導(dǎo)體空腔內(nèi)、外壁的半徑分別為R1和R2 ,帶有凈電量+q ,現(xiàn)在其內(nèi)部距球心為r的地方放一個電量為+Q的點電荷,試求球心處的電勢。
【解析】由于靜電感應(yīng),球殼的內(nèi)、外壁形成兩個帶電球殼。球心電勢是兩個球殼形成電勢、點電荷形成電勢的合效果。
根據(jù)靜電感應(yīng)的嘗試,內(nèi)壁的電荷量為-Q ,外壁的電荷量為+Q+q ,雖然內(nèi)壁的帶電是不均勻的,根據(jù)上面的結(jié)論,其在球心形成的電勢仍可以應(yīng)用定式,所以…
【答案】Uo = k - k + k 。
〖反饋練習(xí)〗如圖7-10所示,兩個極薄的同心導(dǎo)體球殼A和B,半徑分別為RA和RB ,現(xiàn)讓A殼接地,而在B殼的外部距球心d的地方放一個電量為+q的點電荷。試求:(1)A球殼的感應(yīng)電荷量;(2)外球殼的電勢。
〖解說〗這是一個更為復(fù)雜的靜電感應(yīng)情形,B殼將形成圖示的感應(yīng)電荷分布(但沒有凈電量),A殼的情形未畫出(有凈電量),它們的感應(yīng)電荷分布都是不均勻的。
此外,我們還要用到一個重要的常識:接地導(dǎo)體(A殼)的電勢為零。但值得注意的是,這里的“為零”是一個合效果,它是點電荷q 、A殼、B殼(帶同樣電荷時)單獨存在時在A中形成的的電勢的代數(shù)和,所以,當(dāng)我們以球心O點為對象,有
UO = k + k + k = 0
QB應(yīng)指B球殼上的凈電荷量,故 QB = 0
所以 QA = -q
☆學(xué)員討論:A殼的各處電勢均為零,我們的方程能不能針對A殼表面上的某點去列?(答:不能,非均勻帶電球殼的球心以外的點不能應(yīng)用定式。
基于剛才的討論,求B的電勢時也只能求B的球心的電勢(獨立的B殼是等勢體,球心電勢即為所求)——
UB = k + k
〖答〗(1)QA = -q ;(2)UB = k(1-) 。
【物理情形2】圖7-11中,三根實線表示三根首尾相連的等長絕緣細棒,每根棒上的電荷分布情況與絕緣棒都換成導(dǎo)體棒時完全相同。點A是Δabc的中心,點B則與A相對bc棒對稱,且已測得它們的電勢分別為UA和UB 。試問:若將ab棒取走,A、B兩點的電勢將變?yōu)槎嗌伲?/p>
【模型分析】由于細棒上的電荷分布既不均勻、三根細棒也沒有構(gòu)成環(huán)形,故前面的定式不能直接應(yīng)用。若用元段分割→疊加,也具有相當(dāng)?shù)睦щy。所以這里介紹另一種求電勢的方法。
每根細棒的電荷分布雖然復(fù)雜,但相對各自的中點必然是對稱的,而且三根棒的總電量、分布情況彼此必然相同。這就意味著:①三棒對A點的電勢貢獻都相同(可設(shè)為U1);②ab棒、ac棒對B點的電勢貢獻相同(可設(shè)為U2);③bc棒對A、B兩點的貢獻相同(為U1)。
所以,取走ab前 3U1 = UA
2U2 + U1 = UB
取走ab后,因三棒是絕緣體,電荷分布不變,故電勢貢獻不變,所以
UA′= 2U1
UB′= U1 + U2
【答案】UA′= UA ;UB′= UA + UB 。
〖模型變換〗正四面體盒子由彼此絕緣的四塊導(dǎo)體板構(gòu)成,各導(dǎo)體板帶電且電勢分別為U1 、U2 、U3和U4 ,則盒子中心點O的電勢U等于多少?
〖解說〗此處的四塊板子雖然位置相對O點具有對稱性,但電量各不相同,因此對O點的電勢貢獻也不相同,所以應(yīng)該想一點辦法——
我們用“填補法”將電量不對稱的情形加以改觀:先將每一塊導(dǎo)體板復(fù)制三塊,作成一個正四面體盒子,然后將這四個盒子位置重合地放置——構(gòu)成一個有四層壁的新盒子。在這個新盒子中,每個壁的電量將是完全相同的(為原來四塊板的電量之和)、電勢也完全相同(為U1 + U2 + U3 + U4),新盒子表面就構(gòu)成了一個等勢面、整個盒子也是一個等勢體,故新盒子的中心電勢為
U′= U1 + U2 + U3 + U4
最后回到原來的單層盒子,中心電勢必為 U = U′
〖答〗U = (U1 + U2 + U3 + U4)。
☆學(xué)員討論:剛才的這種解題思想是否適用于“物理情形2”?(答:不行,因為三角形各邊上電勢雖然相等,但中點的電勢和邊上的并不相等。)
〖反饋練習(xí)〗電荷q均勻分布在半球面ACB上,球面半徑為R ,CD為通過半球頂點C和球心O的軸線,如圖7-12所示。P、Q為CD軸線上相對O點對稱的兩點,已知P點的電勢為UP ,試求Q點的電勢UQ 。
〖解說〗這又是一個填補法的應(yīng)用。將半球面補成完整球面,并令右邊內(nèi)、外層均勻地帶上電量為q的電荷,如圖7-12所示。
從電量的角度看,右半球面可以看作不存在,故這時P、Q的電勢不會有任何改變。
而換一個角度看,P、Q的電勢可以看成是兩者的疊加:①帶電量為2q的完整球面;②帶電量為-q的半球面。
考查P點,UP = k + U半球面
其中 U半球面顯然和為填補時Q點的電勢大小相等、符號相反,即 U半球面= -UQ
以上的兩個關(guān)系已經(jīng)足以解題了。
〖答〗UQ = k - UP 。
【物理情形3】如圖7-13所示,A、B兩點相距2L ,圓弧是以B為圓心、L為半徑的半圓。A處放有電量為q的電荷,B處放有電量為-q的點電荷。試問:(1)將單位正電荷從O點沿移到D點,電場力對它做了多少功?(2)將單位負電荷從D點沿AB的延長線移到無窮遠處去,電場力對它做多少功?
【模型分析】電勢疊加和關(guān)系WAB = q(UA - UB)= qUAB的基本應(yīng)用。
UO = k + k = 0
UD = k + k = -
U∞ = 0
再用功與電勢的關(guān)系即可。
【答案】(1);(2)。
【相關(guān)應(yīng)用】在不計重力空間,有A、B兩個帶電小球,電量分別為q1和q2 ,質(zhì)量分別為m1和m2 ,被固定在相距L的兩點。試問:(1)若解除A球的固定,它能獲得的最大動能是多少?(2)若同時解除兩球的固定,它們各自的獲得的最大動能是多少?(3)未解除固定時,這個系統(tǒng)的靜電勢能是多少?
【解說】第(1)問甚間;第(2)問在能量方面類比反沖裝置的能量計算,另啟用動量守恒關(guān)系;第(3)問是在前兩問基礎(chǔ)上得出的必然結(jié)論…(這里就回到了一個基本的觀念斧正:勢能是屬于場和場中物體的系統(tǒng),而非單純屬于場中物體——這在過去一直是被忽視的。在兩個點電荷的環(huán)境中,我們通常說“兩個點電荷的勢能”是多少。)
【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 。
〖思考〗設(shè)三個點電荷的電量分別為q1 、q2和q3 ,兩兩相距為r12 、r23和r31 ,則這個點電荷系統(tǒng)的靜電勢能是多少?
〖解〗略。
〖答〗k(++)。
〖反饋應(yīng)用〗如圖7-14所示,三個帶同種電荷的相同金屬小球,每個球的質(zhì)量均為m 、電量均為q ,用長度為L的三根絕緣輕繩連接著,系統(tǒng)放在光滑、絕緣的水平面上。現(xiàn)將其中的一根繩子剪斷,三個球?qū)㈤_始運動起來,試求中間這個小球的最大速度。
〖解〗設(shè)剪斷的是1、3之間的繩子,動力學(xué)分析易知,2球獲得最大動能時,1、2之間的繩子與2、3之間的繩子剛好應(yīng)該在一條直線上。而且由動量守恒知,三球不可能有沿繩子方向的速度。設(shè)2球的速度為v ,1球和3球的速度為v′,則
動量關(guān)系 mv + 2m v′= 0
能量關(guān)系 3k = 2 k + k + mv2 + 2m
解以上兩式即可的v值。
〖答〗v = q 。
三、電場中的導(dǎo)體和電介質(zhì)
【物理情形】兩塊平行放置的很大的金屬薄板A和B,面積都是S ,間距為d(d遠小于金屬板的線度),已知A板帶凈電量+Q1 ,B板帶盡電量+Q2 ,且Q2<Q1 ,試求:(1)兩板內(nèi)外表面的電量分別是多少;(2)空間各處的場強;(3)兩板間的電勢差。
【模型分析】由于靜電感應(yīng),A、B兩板的四個平面的電量將呈現(xiàn)一定規(guī)律的分布(金屬板雖然很薄,但內(nèi)部合場強為零的結(jié)論還是存在的);這里應(yīng)注意金屬板“很大”的前提條件,它事實上是指物理無窮大,因此,可以應(yīng)用無限大平板的場強定式。
為方便解題,做圖7-15,忽略邊緣效應(yīng),四個面的電荷分布應(yīng)是均勻的,設(shè)四個面的電荷面密度分別為σ1 、σ2 、σ3和σ4 ,顯然
(σ1 + σ2)S = Q1
(σ3 + σ4)S = Q2
A板內(nèi)部空間場強為零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0
A板內(nèi)部空間場強為零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0
解以上四式易得 σ1 = σ4 =
σ2 = ?σ3 =
有了四個面的電荷密度,Ⅰ、Ⅱ、Ⅲ空間的場強就好求了〔如EⅡ =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。
最后,UAB = EⅡd
【答案】(1)A板外側(cè)電量、A板內(nèi)側(cè)電量,B板內(nèi)側(cè)電量?、B板外側(cè)電量;(2)A板外側(cè)空間場強2πk,方向垂直A板向外,A、B板之間空間場強2πk,方向由A垂直指向B,B板外側(cè)空間場強2πk,方向垂直B板向外;(3)A、B兩板的電勢差為2πkd,A板電勢高。
〖學(xué)員思考〗如果兩板帶等量異號的凈電荷,兩板的外側(cè)空間場強等于多少?(答:為零。)
〖學(xué)員討論〗(原模型中)作為一個電容器,它的“電量”是多少(答:)?如果在板間充滿相對介電常數(shù)為εr的電介質(zhì),是否會影響四個面的電荷分布(答:不會)?是否會影響三個空間的場強(答:只會影響Ⅱ空間的場強)?
〖學(xué)員討論〗(原模型中)我們是否可以求出A、B兩板之間的靜電力?〔答:可以;以A為對象,外側(cè)受力·(方向相左),內(nèi)側(cè)受力·(方向向右),它們合成即可,結(jié)論為F = Q1Q2 ,排斥力!
【模型變換】如圖7-16所示,一平行板電容器,極板面積為S ,其上半部為真空,而下半部充滿相對介電常數(shù)為εr的均勻電介質(zhì),當(dāng)兩極板分別帶上+Q和?Q的電量后,試求:(1)板上自由電荷的分布;(2)兩板之間的場強;(3)介質(zhì)表面的極化電荷。
【解說】電介質(zhì)的充入雖然不能改變內(nèi)表面的電量總數(shù),但由于改變了場強,故對電荷的分布情況肯定有影響。設(shè)真空部分電量為Q1 ,介質(zhì)部分電量為Q2 ,顯然有
Q1 + Q2 = Q
兩板分別為等勢體,將電容器看成上下兩個電容器的并聯(lián),必有
U1 = U2 即 = ,即 =
解以上兩式即可得Q1和Q2 。
場強可以根據(jù)E = 關(guān)系求解,比較常規(guī)(上下部分的場強相等)。
上下部分的電量是不等的,但場強居然相等,這怎么解釋?從公式的角度看,E = 2πkσ(單面平板),當(dāng)k 、σ同時改變,可以保持E不變,但這是一種結(jié)論所展示的表象。從內(nèi)在的角度看,k的改變正是由于極化電荷的出現(xiàn)所致,也就是說,極化電荷的存在相當(dāng)于在真空中形成了一個新的電場,正是這個電場與自由電荷(在真空中)形成的電場疊加成為E2 ,所以
E2 = 4πk(σ ? σ′)= 4πk( ? )
請注意:①這里的σ′和Q′是指極化電荷的面密度和總量;② E = 4πkσ的關(guān)系是由兩個帶電面疊加的合效果。
【答案】(1)真空部分的電量為Q ,介質(zhì)部分的電量為Q ;(2)整個空間的場強均為 ;(3)Q 。
〖思考應(yīng)用〗一個帶電量為Q的金屬小球,周圍充滿相對介電常數(shù)為εr的均勻電介質(zhì),試求與與導(dǎo)體表面接觸的介質(zhì)表面的極化電荷量。
〖解〗略。
〖答〗Q′= Q 。
四、電容器的相關(guān)計算
【物理情形1】由許多個電容為C的電容器組成一個如圖7-17所示的多級網(wǎng)絡(luò),試問:(1)在最后一級的右邊并聯(lián)一個多大電容C′,可使整個網(wǎng)絡(luò)的A、B兩端電容也為C′?(2)不接C′,但無限地增加網(wǎng)絡(luò)的級數(shù),整個網(wǎng)絡(luò)A、B兩端的總電容是多少?
【模型分析】這是一個練習(xí)電容電路簡化基本事例。
第(1)問中,未給出具體級數(shù),一般結(jié)論應(yīng)適用特殊情形:令級數(shù)為1 ,于是
+ = 解C′即可。
第(2)問中,因為“無限”,所以“無限加一級后仍為無限”,不難得出方程
+ =
【答案】(1)C ;(2)C 。
【相關(guān)模型】在圖7-18所示的電路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,試求A、B之間的等效電容。
【解說】對于既非串聯(lián)也非并聯(lián)的電路,需要用到一種“Δ→Y型變換”,參見圖7-19,根據(jù)三個端點之間的電容等效,容易得出定式——
Δ→Y型:Ca =
Cb =
Cc =
Y→Δ型:C1 =
C2 =
C3 =
有了這樣的定式后,我們便可以進行如圖7-20所示的四步電路簡化(為了方便,電容不宜引進新的符號表達,而是直接將變換后的量值標示在圖中)——
【答】約2.23μF 。
【物理情形2】如圖7-21所示的電路中,三個電容器完全相同,電源電動勢ε1 = 3.0V ,ε2 = 4.5V,開關(guān)K1和K2接通前電容器均未帶電,試求K1和K2接通后三個電容器的電壓Uao 、Ubo和Uco各為多少。
【解說】這是一個考查電容器電路的基本習(xí)題,解題的關(guān)鍵是要抓與o相連的三塊極板(俗稱“孤島”)的總電量為零。
電量關(guān)系:++= 0
電勢關(guān)系:ε1 = Uao + Uob = Uao ? Ubo
ε2 = Ubo + Uoc = Ubo ? Uco
解以上三式即可。
【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。
【伸展應(yīng)用】如圖7-22所示,由n個單元組成的電容器網(wǎng)絡(luò),每一個單元由三個電容器連接而成,其中有兩個的電容為3C ,另一個的電容為3C 。以a、b為網(wǎng)絡(luò)的輸入端,a′、b′為輸出端,今在a、b間加一個恒定電壓U ,而在a′b′間接一個電容為C的電容器,試求:(1)從第k單元輸入端算起,后面所有電容器儲存的總電能;(2)若把第一單元輸出端與后面斷開,再除去電源,并把它的輸入端短路,則這個單元的三個電容器儲存的總電能是多少?
【解說】這是一個結(jié)合網(wǎng)絡(luò)計算和“孤島現(xiàn)象”的典型事例。
(1)類似“物理情形1”的計算,可得 C總 = Ck = C
所以,從輸入端算起,第k單元后的電壓的經(jīng)驗公式為 Uk =
再算能量儲存就不難了。
(2)斷開前,可以算出第一單元的三個電容器、以及后面“系統(tǒng)”的電量分配如圖7-23中的左圖所示。這時,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤島”。此后,電容器的相互充電過程(C3類比為“電源”)滿足——
電量關(guān)系:Q1′= Q3′
Q2′+ Q3′=
電勢關(guān)系:+ =
從以上三式解得 Q1′= Q3′= ,Q2′= ,這樣系統(tǒng)的儲能就可以用得出了。
【答】(1)Ek = ;(2) 。
〖學(xué)員思考〗圖7-23展示的過程中,始末狀態(tài)的電容器儲能是否一樣?(答:不一樣;在相互充電的過程中,導(dǎo)線消耗的焦耳熱已不可忽略。)
☆第七部分完☆
第十部分 磁場
第一講 基本知識介紹
《磁場》部分在奧賽考剛中的考點很少,和高考要求的區(qū)別不是很大,只是在兩處有深化:a、電流的磁場引進定量計算;b、對帶電粒子在復(fù)合場中的運動進行了更深入的分析。
一、磁場與安培力
1、磁場
a、永磁體、電流磁場→磁現(xiàn)象的電本質(zhì)
b、磁感強度、磁通量
c、穩(wěn)恒電流的磁場
*畢奧-薩伐爾定律(Biot-Savart law):對于電流強度為I 、長度為dI的導(dǎo)體元段,在距離為r的點激發(fā)的“元磁感應(yīng)強度”為dB 。矢量式d= k,(d表示導(dǎo)體元段的方向沿電流的方向、為導(dǎo)體元段到考查點的方向矢量);或用大小關(guān)系式dB = k結(jié)合安培定則尋求方向亦可。其中 k = 1.0×10?7N/A2 。應(yīng)用畢薩定律再結(jié)合矢量疊加原理,可以求解任何形狀導(dǎo)線在任何位置激發(fā)的磁感強度。
畢薩定律應(yīng)用在“無限長”直導(dǎo)線的結(jié)論:B = 2k ;
*畢薩定律應(yīng)用在環(huán)形電流垂直中心軸線上的結(jié)論:B = 2πkI ;
*畢薩定律應(yīng)用在“無限長”螺線管內(nèi)部的結(jié)論:B = 2πknI 。其中n為單位長度螺線管的匝數(shù)。
2、安培力
a、對直導(dǎo)體,矢量式為 = I;或表達為大小關(guān)系式 F = BILsinθ再結(jié)合“左手定則”解決方向問題(θ為B與L的夾角)。
b、彎曲導(dǎo)體的安培力
⑴整體合力
折線導(dǎo)體所受安培力的合力等于連接始末端連線導(dǎo)體(電流不變)的的安培力。
證明:參照圖9-1,令MN段導(dǎo)體的安培力F1與NO段導(dǎo)體的安培力F2的合力為F,則F的大小為
F =
= BI
= BI
關(guān)于F的方向,由于ΔFF2P∽ΔMNO,可以證明圖9-1中的兩個灰色三角形相似,這也就證明了F是垂直MO的,再由于ΔPMO是等腰三角形(這個證明很容易),故F在MO上的垂足就是MO的中點了。
證畢。
由于連續(xù)彎曲的導(dǎo)體可以看成是無窮多元段直線導(dǎo)體的折合,所以,關(guān)于折線導(dǎo)體整體合力的結(jié)論也適用于彎曲導(dǎo)體。(說明:這個結(jié)論只適用于勻強磁場。)
⑵導(dǎo)體的內(nèi)張力
彎曲導(dǎo)體在平衡或加速的情形下,均會出現(xiàn)內(nèi)張力,具體分析時,可將導(dǎo)體在被考查點切斷,再將被切斷的某一部分隔離,列平衡方程或動力學(xué)方程求解。
c、勻強磁場對線圈的轉(zhuǎn)矩
如圖9-2所示,當(dāng)一個矩形線圈(線圈面積為S、通以恒定電流I)放入勻強磁場中,且磁場B的方向平行線圈平面時,線圈受安培力將轉(zhuǎn)動(并自動選擇垂直B的中心軸OO′,因為質(zhì)心無加速度),此瞬時的力矩為
M = BIS
幾種情形的討論——
⑴增加匝數(shù)至N ,則 M = NBIS ;
⑵轉(zhuǎn)軸平移,結(jié)論不變(證明從略);
⑶線圈形狀改變,結(jié)論不變(證明從略);
*⑷磁場平行線圈平面相對原磁場方向旋轉(zhuǎn)α角,則M = BIScosα ,如圖9-3;
證明:當(dāng)α = 90°時,顯然M = 0 ,而磁場是可以分解的,只有垂直轉(zhuǎn)軸的的分量Bcosα才能產(chǎn)生力矩…
⑸磁場B垂直O(jiān)O′軸相對線圈平面旋轉(zhuǎn)β角,則M = BIScosβ ,如圖9-4。
證明:當(dāng)β = 90°時,顯然M = 0 ,而磁場是可以分解的,只有平行線圈平面的的分量Bcosβ才能產(chǎn)生力矩…
說明:在默認的情況下,討論線圈的轉(zhuǎn)矩時,認為線圈的轉(zhuǎn)軸垂直磁場。如果沒有人為設(shè)定,而是讓安培力自行選定轉(zhuǎn)軸,這時的力矩稱為力偶矩。
二、洛侖茲力
1、概念與規(guī)律
a、 = q,或展開為f = qvBsinθ再結(jié)合左、右手定則確定方向(其中θ為與的夾角)。安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)。
b、能量性質(zhì)
由于總垂直與確定的平面,故總垂直 ,只能起到改變速度方向的作用。結(jié)論:洛侖茲力可對帶電粒子形成沖量,卻不可能做功;颍郝鍋銎澚墒箮щ娏W拥膭恿堪l(fā)生改變卻不能使其動能發(fā)生改變。
問題:安培力可以做功,為什么洛侖茲力不能做功?
解說:應(yīng)該注意“安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)”這句話的確切含義——“宏觀體現(xiàn)”和“完全相等”是有區(qū)別的。我們可以分兩種情形看這個問題:(1)導(dǎo)體靜止時,所有粒子的洛侖茲力的合力等于安培力(這個證明從略);(2)導(dǎo)體運動時,粒子參與的是沿導(dǎo)體棒的運動v1和導(dǎo)體運動v2的合運動,其合速度為v ,這時的洛侖茲力f垂直v而安培力垂直導(dǎo)體棒,它們是不可能相等的,只能說安培力是洛侖茲力的分力f1 = qv1B的合力(見圖9-5)。
很顯然,f1的合力(安培力)做正功,而f不做功(或者說f1的正功和f2的負功的代數(shù)和為零)。(事實上,由于電子定向移動速率v1在10?5m/s數(shù)量級,而v2一般都在10?2m/s數(shù)量級以上,致使f1只是f的一個極小分量。)
☆如果從能量的角度看這個問題,當(dāng)導(dǎo)體棒放在光滑的導(dǎo)軌上時(參看圖9-6),導(dǎo)體棒必獲得動能,這個動能是怎么轉(zhuǎn)化來的呢?
若先將導(dǎo)體棒卡住,回路中形成穩(wěn)恒的電流,電流的功轉(zhuǎn)化為回路的焦耳熱。而將導(dǎo)體棒釋放后,導(dǎo)體棒受安培力加速,將形成感應(yīng)電動勢(反電動勢)。動力學(xué)分析可知,導(dǎo)體棒的最后穩(wěn)定狀態(tài)是勻速運動(感應(yīng)電動勢等于電源電動勢,回路電流為零)。由于達到穩(wěn)定速度前的回路電流是逐漸減小的,故在相同時間內(nèi)發(fā)的焦耳熱將比導(dǎo)體棒被卡住時少。所以,導(dǎo)體棒動能的增加是以回路焦耳熱的減少為代價的。
2、僅受洛侖茲力的帶電粒子運動
a、⊥時,勻速圓周運動,半徑r = ,周期T =
b、與成一般夾角θ時,做等螺距螺旋運動,半徑r = ,螺距d =
這個結(jié)論的證明一般是將分解…(過程從略)。
☆但也有一個問題,如果將分解(成垂直速度分量B2和平行速度分量B1 ,如圖9-7所示),粒子的運動情形似乎就不一樣了——在垂直B2的平面內(nèi)做圓周運動?
其實,在圖9-7中,B1平行v只是一種暫時的現(xiàn)象,一旦受B2的洛侖茲力作用,v改變方向后就不再平行B1了。當(dāng)B1施加了洛侖茲力后,粒子的“圓周運動”就無法達成了。(而在分解v的處理中,這種局面是不會出現(xiàn)的。)
3、磁聚焦
a、結(jié)構(gòu):見圖9-8,K和G分別為陰極和控制極,A為陽極加共軸限制膜片,螺線管提供勻強磁場。
b、原理:由于控制極和共軸膜片的存在,電子進磁場的發(fā)散角極小,即速度和磁場的夾角θ極小,各粒子做螺旋運動時可以認為螺距彼此相等(半徑可以不等),故所有粒子會“聚焦”在熒光屏上的P點。
4、回旋加速器
a、結(jié)構(gòu)&原理(注意加速時間應(yīng)忽略)
b、磁場與交變電場頻率的關(guān)系
因回旋周期T和交變電場周期T′必相等,故 =
c、最大速度 vmax = = 2πRf
5、質(zhì)譜儀
速度選擇器&粒子圓周運動,和高考要求相同。
第二講 典型例題解析
一、磁場與安培力的計算
【例題1】兩根無限長的平行直導(dǎo)線a、b相距40cm,通過電流的大小都是3.0A,方向相反。試求位于兩根導(dǎo)線之間且在兩導(dǎo)線所在平面內(nèi)的、與a導(dǎo)線相距10cm的P點的磁感強度。
【解說】這是一個關(guān)于畢薩定律的簡單應(yīng)用。解題過程從略。
【答案】大小為8.0×10?6T ,方向在圖9-9中垂直紙面向外。
【例題2】半徑為R ,通有電流I的圓形線圈,放在磁感強度大小為B 、方向垂直線圈平面的勻強磁場中,求由于安培力而引起的線圈內(nèi)張力。
【解說】本題有兩種解法。
方法一:隔離一小段弧,對應(yīng)圓心角θ ,則弧長L = θR 。因為θ →
第一部分 力&物體的平衡
第一講 力的處理
一、矢量的運算
1、加法
表達: + = 。
名詞:為“和矢量”。
法則:平行四邊形法則。如圖1所示。
和矢量大。篶 = ,其中α為和的夾角。
和矢量方向:在、之間,和夾角β= arcsin
2、減法
表達: = - 。
名詞:為“被減數(shù)矢量”,為“減數(shù)矢量”,為“差矢量”。
法則:三角形法則。如圖2所示。將被減數(shù)矢量和減數(shù)矢量的起始端平移到一點,然后連接兩時量末端,指向被減數(shù)時量的時量,即是差矢量。
差矢量大小:a = ,其中θ為和的夾角。
差矢量的方向可以用正弦定理求得。
一條直線上的矢量運算是平行四邊形和三角形法則的特例。
例題:已知質(zhì)點做勻速率圓周運動,半徑為R ,周期為T ,求它在T內(nèi)和在T內(nèi)的平均加速度大小。
解說:如圖3所示,A到B點對應(yīng)T的過程,A到C點對應(yīng)T的過程。這三點的速度矢量分別設(shè)為、和。
根據(jù)加速度的定義 = 得:= ,=
由于有兩處涉及矢量減法,設(shè)兩個差矢量 = - ,= - ,根據(jù)三角形法則,它們在圖3中的大小、方向已繪出(的“三角形”已被拉伸成一條直線)。
本題只關(guān)心各矢量的大小,顯然:
= = = ,且: = = , = 2=
所以:= = = ,= = = 。
(學(xué)生活動)觀察與思考:這兩個加速度是否相等,勻速率圓周運動是不是勻變速運動?
答:否;不是。
3、乘法
矢量的乘法有兩種:叉乘和點乘,和代數(shù)的乘法有著質(zhì)的不同。
⑴ 叉乘
表達:× =
名詞:稱“矢量的叉積”,它是一個新的矢量。
叉積的大。篶 = absinα,其中α為和的夾角。意義:的大小對應(yīng)由和作成的平行四邊形的面積。
叉積的方向:垂直和確定的平面,并由右手螺旋定則確定方向,如圖4所示。
顯然,×≠×,但有:×= -×
⑵ 點乘
表達:· = c
名詞:c稱“矢量的點積”,它不再是一個矢量,而是一個標量。
點積的大。篶 = abcosα,其中α為和的夾角。
二、共點力的合成
1、平行四邊形法則與矢量表達式
2、一般平行四邊形的合力與分力的求法
余弦定理(或分割成RtΔ)解合力的大小
正弦定理解方向
三、力的分解
1、按效果分解
2、按需要——正交分解
第二講 物體的平衡
一、共點力平衡
1、特征:質(zhì)心無加速度。
2、條件:Σ = 0 ,或 = 0 , = 0
例題:如圖5所示,長為L 、粗細不均勻的橫桿被兩根輕繩水平懸掛,繩子與水平方向的夾角在圖上已標示,求橫桿的重心位置。
解說:直接用三力共點的知識解題,幾何關(guān)系比較簡單。
答案:距棒的左端L/4處。
(學(xué)生活動)思考:放在斜面上的均質(zhì)長方體,按實際情況分析受力,斜面的支持力會通過長方體的重心嗎?
解:將各處的支持力歸納成一個N ,則長方體受三個力(G 、f 、N)必共點,由此推知,N不可能通過長方體的重心。正確受力情形如圖6所示(通常的受力圖是將受力物體看成一個點,這時,N就過重心了)。
答:不會。
二、轉(zhuǎn)動平衡
1、特征:物體無轉(zhuǎn)動加速度。
2、條件:Σ= 0 ,或ΣM+ =ΣM-
如果物體靜止,肯定會同時滿足兩種平衡,因此用兩種思路均可解題。
3、非共點力的合成
大小和方向:遵從一條直線矢量合成法則。
作用點:先假定一個等效作用點,然后讓所有的平行力對這個作用點的和力矩為零。
第三講 習(xí)題課
1、如圖7所示,在固定的、傾角為α斜面上,有一塊可以轉(zhuǎn)動的夾板(β不定),夾板和斜面夾著一個質(zhì)量為m的光滑均質(zhì)球體,試求:β取何值時,夾板對球的彈力最小。
解說:法一,平行四邊形動態(tài)處理。
對球體進行受力分析,然后對平行四邊形中的矢量G和N1進行平移,使它們構(gòu)成一個三角形,如圖8的左圖和中圖所示。
由于G的大小和方向均不變,而N1的方向不可變,當(dāng)β增大導(dǎo)致N2的方向改變時,N2的變化和N1的方向變化如圖8的右圖所示。
顯然,隨著β增大,N1單調(diào)減小,而N2的大小先減小后增大,當(dāng)N2垂直N1時,N2取極小值,且N2min = Gsinα。
法二,函數(shù)法。
看圖8的中間圖,對這個三角形用正弦定理,有:
= ,即:N2 = ,β在0到180°之間取值,N2的極值討論是很容易的。
答案:當(dāng)β= 90°時,甲板的彈力最小。
2、把一個重為G的物體用一個水平推力F壓在豎直的足夠高的墻壁上,F(xiàn)隨時間t的變化規(guī)律如圖9所示,則在t = 0開始物體所受的摩擦力f的變化圖線是圖10中的哪一個?
解說:靜力學(xué)旨在解決靜態(tài)問題和準靜態(tài)過程的問題,但本題是一個例外。物體在豎直方向的運動先加速后減速,平衡方程不再適用。如何避開牛頓第二定律,是本題授課時的難點。
靜力學(xué)的知識,本題在于區(qū)分兩種摩擦的不同判據(jù)。
水平方向合力為零,得:支持力N持續(xù)增大。
物體在運動時,滑動摩擦力f = μN ,必持續(xù)增大。但物體在靜止后靜摩擦力f′≡ G ,與N沒有關(guān)系。
對運動過程加以分析,物體必有加速和減速兩個過程。據(jù)物理常識,加速時,f < G ,而在減速時f > G 。
答案:B 。
3、如圖11所示,一個重量為G的小球套在豎直放置的、半徑為R的光滑大環(huán)上,另一輕質(zhì)彈簧的勁度系數(shù)為k ,自由長度為L(L<2R),一端固定在大圓環(huán)的頂點A ,另一端與小球相連。環(huán)靜止平衡時位于大環(huán)上的B點。試求彈簧與豎直方向的夾角θ。
解說:平行四邊形的三個矢量總是可以平移到一個三角形中去討論,解三角形的典型思路有三種:①分割成直角三角形(或本來就是直角三角形);②利用正、余弦定理;③利用力學(xué)矢量三角形和某空間位置三角形相似。本題旨在貫徹第三種思路。
分析小球受力→矢量平移,如圖12所示,其中F表示彈簧彈力,N表示大環(huán)的支持力。
(學(xué)生活動)思考:支持力N可不可以沿圖12中的反方向?(正交分解看水平方向平衡——不可以。)
容易判斷,圖中的灰色矢量三角形和空間位置三角形ΔAOB是相似的,所以:
⑴
由胡克定律:F = k(- R) ⑵
幾何關(guān)系:= 2Rcosθ ⑶
解以上三式即可。
答案:arccos 。
(學(xué)生活動)思考:若將彈簧換成勁度系數(shù)k′較大的彈簧,其它條件不變,則彈簧彈力怎么變?環(huán)的支持力怎么變?
答:變;不變。
(學(xué)生活動)反饋練習(xí):光滑半球固定在水平面上,球心O的正上方有一定滑輪,一根輕繩跨過滑輪將一小球從圖13所示的A位置開始緩慢拉至B位置。試判斷:在此過程中,繩子的拉力T和球面支持力N怎樣變化?
解:和上題完全相同。
答:T變小,N不變。
4、如圖14所示,一個半徑為R的非均質(zhì)圓球,其重心不在球心O點,先將它置于水平地面上,平衡時球面上的A點和地面接觸;再將它置于傾角為30°的粗糙斜面上,平衡時球面上的B點與斜面接觸,已知A到B的圓心角也為30°。試求球體的重心C到球心O的距離。
解說:練習(xí)三力共點的應(yīng)用。
根據(jù)在平面上的平衡,可知重心C在OA連線上。根據(jù)在斜面上的平衡,支持力、重力和靜摩擦力共點,可以畫出重心的具體位置。幾何計算比較簡單。
答案:R 。
(學(xué)生活動)反饋練習(xí):靜摩擦足夠,將長為a 、厚為b的磚塊碼在傾角為θ的斜面上,最多能碼多少塊?
解:三力共點知識應(yīng)用。
答: 。
4、兩根等長的細線,一端拴在同一懸點O上,另一端各系一個小球,兩球的質(zhì)量分別為m1和m2 ,已知兩球間存在大小相等、方向相反的斥力而使兩線張開一定角度,分別為45和30°,如圖15所示。則m1 : m2??為多少?
解說:本題考查正弦定理、或力矩平衡解靜力學(xué)問題。
對兩球進行受力分析,并進行矢量平移,如圖16所示。
首先注意,圖16中的灰色三角形是等腰三角形,兩底角相等,設(shè)為α。
而且,兩球相互作用的斥力方向相反,大小相等,可用同一字母表示,設(shè)為F 。
對左邊的矢量三角形用正弦定理,有:
= ①
同理,對右邊的矢量三角形,有: = ②
解①②兩式即可。
答案:1 : 。
(學(xué)生活動)思考:解本題是否還有其它的方法?
答:有——將模型看成用輕桿連成的兩小球,而將O點看成轉(zhuǎn)軸,兩球的重力對O的力矩必然是平衡的。這種方法更直接、簡便。
應(yīng)用:若原題中繩長不等,而是l1 :l2 = 3 :2 ,其它條件不變,m1與m2的比值又將是多少?
解:此時用共點力平衡更加復(fù)雜(多一個正弦定理方程),而用力矩平衡則幾乎和“思考”完全相同。
答:2 :3 。
5、如圖17所示,一個半徑為R的均質(zhì)金屬球上固定著一根長為L的輕質(zhì)細桿,細桿的左端用鉸鏈與墻壁相連,球下邊墊上一塊木板后,細桿恰好水平,而木板下面是光滑的水平面。由于金屬球和木板之間有摩擦(已知摩擦因素為μ),所以要將木板從球下面向右抽出時,至少需要大小為F的水平拉力。試問:現(xiàn)要將木板繼續(xù)向左插進一些,至少需要多大的水平推力?
解說:這是一個典型的力矩平衡的例題。
以球和桿為對象,研究其對轉(zhuǎn)軸O的轉(zhuǎn)動平衡,設(shè)木板拉出時給球體的摩擦力為f ,支持力為N ,重力為G ,力矩平衡方程為:
f R + N(R + L)= G(R + L) ①
球和板已相對滑動,故:f = μN ②
解①②可得:f =
再看木板的平衡,F(xiàn) = f 。
同理,木板插進去時,球體和木板之間的摩擦f′= = F′。
答案: 。
第四講 摩擦角及其它
一、摩擦角
1、全反力:接觸面給物體的摩擦力與支持力的合力稱全反力,一般用R表示,亦稱接觸反力。
2、摩擦角:全反力與支持力的最大夾角稱摩擦角,一般用φm表示。
此時,要么物體已經(jīng)滑動,必有:φm = arctgμ(μ為動摩擦因素),稱動摩擦力角;要么物體達到最大運動趨勢,必有:φms = arctgμs(μs為靜摩擦因素),稱靜摩擦角。通常處理為φm = φms 。
3、引入全反力和摩擦角的意義:使分析處理物體受力時更方便、更簡捷。
二、隔離法與整體法
1、隔離法:當(dāng)物體對象有兩個或兩個以上時,有必要各個擊破,逐個講每個個體隔離開來分析處理,稱隔離法。
在處理各隔離方程之間的聯(lián)系時,應(yīng)注意相互作用力的大小和方向關(guān)系。
2、整體法:當(dāng)各個體均處于平衡狀態(tài)時,我們可以不顧個體的差異而講多個對象看成一個整體進行分析處理,稱整體法。
應(yīng)用整體法時應(yīng)注意“系統(tǒng)”、“內(nèi)力”和“外力”的涵義。
三、應(yīng)用
1、物體放在水平面上,用與水平方向成30°的力拉物體時,物體勻速前進。若此力大小不變,改為沿水平方向拉物體,物體仍能勻速前進,求物體與水平面之間的動摩擦因素μ。
解說:這是一個能顯示摩擦角解題優(yōu)越性的題目?梢酝ㄟ^不同解法的比較讓學(xué)生留下深刻印象。
法一,正交分解。(學(xué)生分析受力→列方程→得結(jié)果。)
法二,用摩擦角解題。
引進全反力R ,對物體兩個平衡狀態(tài)進行受力分析,再進行矢量平移,得到圖18中的左圖和中間圖(注意:重力G是不變的,而全反力R的方向不變、F的大小不變),φm指摩擦角。
再將兩圖重疊成圖18的右圖。由于灰色的三角形是一個頂角為30°的等腰三角形,其頂角的角平分線必垂直底邊……故有:φm = 15°。
最后,μ= tgφm 。
答案:0.268 。
(學(xué)生活動)思考:如果F的大小是可以選擇的,那么能維持物體勻速前進的最小F值是多少?
解:見圖18,右圖中虛線的長度即Fmin ,所以,F(xiàn)min = Gsinφm 。
答:Gsin15°(其中G為物體的重量)。
2、如圖19所示,質(zhì)量m = 5kg的物體置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物體,使物體能夠沿斜面向上勻速運動,而斜面體始終靜止。已知斜面的質(zhì)量M = 10kg ,傾角為30°,重力加速度g = 10m/s2 ,求地面對斜面體的摩擦力大小。
解說:
本題旨在顯示整體法的解題的優(yōu)越性。
法一,隔離法。簡要介紹……
法二,整體法。注意,滑塊和斜面隨有相對運動,但從平衡的角度看,它們是完全等價的,可以看成一個整體。
做整體的受力分析時,內(nèi)力不加考慮。受力分析比較簡單,列水平方向平衡方程很容易解地面摩擦力。
答案:26.0N 。
(學(xué)生活動)地面給斜面體的支持力是多少?
解:略。
答:135N 。
應(yīng)用:如圖20所示,一上表面粗糙的斜面體上放在光滑的水平地面上,斜面的傾角為θ。另一質(zhì)量為m的滑塊恰好能沿斜面勻速下滑。若用一推力F作用在滑塊上,使之能沿斜面勻速上滑,且要求斜面體靜止不動,就必須施加一個大小為P = 4mgsinθcosθ的水平推力作用于斜面體。使?jié)M足題意的這個F的大小和方向。
解說:這是一道難度較大的靜力學(xué)題,可以動用一切可能的工具解題。
法一:隔離法。
由第一個物理情景易得,斜面于滑塊的摩擦因素μ= tgθ
對第二個物理情景,分別隔離滑塊和斜面體分析受力,并將F沿斜面、垂直斜面分解成Fx和Fy ,滑塊與斜面之間的兩對相互作用力只用兩個字母表示(N表示正壓力和彈力,f表示摩擦力),如圖21所示。
對滑塊,我們可以考查沿斜面方向和垂直斜面方向的平衡——
Fx = f + mgsinθ
Fy + mgcosθ= N
且 f = μN = Ntgθ
綜合以上三式得到:
Fx = Fytgθ+ 2mgsinθ ①
對斜面體,只看水平方向平衡就行了——
P = fcosθ+ Nsinθ
即:4mgsinθcosθ=μNcosθ+ Nsinθ
代入μ值,化簡得:Fy = mgcosθ ②
②代入①可得:Fx = 3mgsinθ
最后由F =解F的大小,由tgα= 解F的方向(設(shè)α為F和斜面的夾角)。
答案:大小為F = mg,方向和斜面夾角α= arctg()指向斜面內(nèi)部。
法二:引入摩擦角和整體法觀念。
仍然沿用“法一”中關(guān)于F的方向設(shè)置(見圖21中的α角)。
先看整體的水平方向平衡,有:Fcos(θ- α) = P ⑴
再隔離滑塊,分析受力時引進全反力R和摩擦角φ,由于簡化后只有三個力(R、mg和F),可以將矢量平移后構(gòu)成一個三角形,如圖22所示。
在圖22右邊的矢量三角形中,有: = = ⑵
注意:φ= arctgμ= arctg(tgθ) = θ ⑶
解⑴⑵⑶式可得F和α的值。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com