(i) 求二面角的大小, 查看更多

 

題目列表(包括答案和解析)

如圖(1),在直角梯形ACC1A1中,∠CAA1=90°,AA1∥CC1,AA1=4,AC=3,CC1=1,點B在線段AC上,AB=2BC,BB1∥AA1,且BB1交A1C1于點B1.現(xiàn)將梯形ACC1A1沿直線BB1折成二面角A-BB1-C,設(shè)其大小為θ.
(1)在上述折疊過程中,若90°≤θ≤180°,請你動手實驗并直接寫出直線A1B1與平面BCC1B1所成角的取值范圍.(不必證明);
(2)當θ=90°時,連接AC、A1C1、AC1,得到如圖(2)所示的幾何體ABC-A1B1C1,
(i)若M為線段AC1的中點,求證:BM∥平面A1B1C1
(ii)記平面A1B1C1與平面BCC1B1所成的二面角為α(0<α≤90°),求cosa的值.

查看答案和解析>>






、分別為、的中點。
(I)求證:平面;
(Ⅱ)求三棱錐的體積;
(Ⅲ)求平面與平面所成的銳二面角大小的余弦值。

查看答案和解析>>

(2011•莆田模擬)如圖(1),在直角梯形ACC1A1中,∠CAA1=90°,AA1∥CC1,AA1=4,AC=3,CC1=1,點B在線段AC上,AB=2BC,BB1∥AA1,且BB1交A1C1于點B1.現(xiàn)將梯形ACC1A1沿直線BB1折成二面角A-BB1-C,設(shè)其大小為θ.
(1)在上述折疊過程中,若90°≤θ≤180°,請你動手實驗并直接寫出直線A1B1與平面BCC1B1所成角的取值范圍.(不必證明);
(2)當θ=90°時,連接AC、A1C1、AC1,得到如圖(2)所示的幾何體ABC-A1B1C1,
(i)若M為線段AC1的中點,求證:BM∥平面A1B1C1;
(ii)記平面A1B1C1與平面BCC1B1所成的二面角為α(0<α≤90°),求cosa的值.

查看答案和解析>>

如圖,正三棱柱中,的中點,

   (I)求證://平面;

   (II)求二面角的大。

查看答案和解析>>

如圖,正三棱柱中,的中點,

   (I)求證://平面

   (II)求二面角的大。

查看答案和解析>>

選擇題: CABDA   BBADA   BB

4、原式

由條件可求得:    原式   故選D

5、由題得,則是公比為的等比數(shù)列,則,故選答案

6、由已知可得,直線的方程

直線過兩個整點,(),即,故應(yīng)選B

7、令,則,其值域為.由

對數(shù)函數(shù)的單調(diào)性可知:,且的最小值,

故選答案。

8、共有個四位數(shù),其中個位數(shù)字是1,且恰好有兩個相同數(shù)字的四位數(shù)分為兩類:一類:“1”重復(fù),有個;另一類;其他三個數(shù)字之一重復(fù),有種。所以答案為:A

9、由題意可知滿足的軌跡是雙曲線的右支,根據(jù)“單曲線型直線”的定義可知,就是求哪條直線與雙曲線的右支有交點,故選D

10、選?梢宰C明D點和AB的中點E到P點和C點的距離相等,所以排除B和C選項。滿足的點在PC的中垂面上,PC的中垂面與ABCD的交線是直線,從而選A。

11、解:以的平分線所在直線為軸,建立坐標系,設(shè),則、,

所以

,故當且僅當,即為正三角形時,  故選B

12、,

,

的最小值為,故選答案

二、填空題

13、

14、利用正弦定理可將已知等式變?yōu)?sub>,

,  

時,有最大值

15、。

16、。畫圖分析得在二面角內(nèi)的那一部分的體積是球的體積的,所以

三、解答題:

17、解:

(1)由

上是增函數(shù),

可額可得

18、(1)如圖建立空間直角坐標系,則

設(shè)

分別為的重心,,

,即

(2)(i)平面,

,平面的法向量為,

平面的法向量為

,即二面角的大小為

(ii)設(shè)平面的法向量,

,由解得

,到平面的距離為

18、解:(I)抽取的球的標號可能為1,2,3,4

分別為0,1,2,3:分別為

因此的所有取值為0,1,2,3,4,5

時,可取最大值5,此時

(Ⅱ)當時,的所有取值為(1,2),此時;

時,的所有取值為(1,1),(1,3),(2,2),此時

時,的所有取值為(1,4),(2,1),(2,3),(3,2)此時

時,的所有取值為(2,4),(3,1),(3,3),(4,2)此時

時,的所有取值為(3,4),(4,1),(4,3),此時

的分布列為:

0

1

2

3

4

5

。

20解:(1)

   故

(Ⅱ)由(I)知

。當時,;

時,

(Ⅲ)

①-②得

。

 

21、(I)解:依題設(shè)得橢圓的方程為,

直線的方程分別為

如圖,設(shè)其中

滿足方程

上知。

所以,化簡得,

解得。

(Ⅱ)解法一:根據(jù)點到直線的距離公式和①式知,點,的距離分別為

,

,所以四邊形的面積為

即當時,上式取等號,所以的最大值為2。

解法二:由題設(shè),,

設(shè)由①得,

故四邊形的面積為+=

時,上式取等號,所以的最大值為

22、解:(I)由題設(shè)可得

函數(shù)上是增函數(shù),

時,不等式恒成立。

時,的最大值為1,則實數(shù)的取值范圍是;

(Ⅱ)當時,

時,,于是上單調(diào)遞減;

時,,于是上單調(diào)遞增。

綜上所述,當時,函數(shù)上的最小值為,當時,

函數(shù)上的最大值為

(Ⅲ)當時,由(Ⅰ)知上是增函數(shù)

對于任意的正整數(shù),有,則

,。

成立,

 

 

 


同步練習(xí)冊答案