題目列表(包括答案和解析)
π |
4 |
3π |
4 |
OP |
l |
π |
4 |
設為正方形的中心,四邊形是平行四邊形,且平面平面,若.
(1)求證:平面.
(2)線段上是否存在一點,使平面?若存在,求的值;若不存在,請說明理由.
(本題滿分16分)已知在棱長為的正方體中,為棱的中點,為正方形的中心,點分別在直線和上.
(1)若分別為棱,的中點,求直線與所成角的余弦值;
(2)若直線與直線垂直相交,求此時線段的長;
(3)在(2)的條件下,求直線與所確定的平面與平面所成的銳二面角的余弦值.
已知四棱柱的底面為正方形,側棱與底面邊長相等,在底面內的射影為正方形的中心,則與底面所成角的正弦值等于( )
A. B. C. D.
選擇題: CABDA BBADA BB
4、原式
由條件可求得: 原式 故選D
5、由題得,則是公比為的等比數(shù)列,則,故選答案
6、由已知可得,直線的方程,
直線過兩個整點,(),即,故應選B
7、令,則,其值域為.由
對數(shù)函數(shù)的單調性可知:,且的最小值而,
故選答案。
8、共有個四位數(shù),其中個位數(shù)字是1,且恰好有兩個相同數(shù)字的四位數(shù)分為兩類:一類:“
9、由題意可知滿足的的軌跡是雙曲線的右支,根據(jù)“單曲線型直線”的定義可知,就是求哪條直線與雙曲線的右支有交點,故選D
10、選?梢宰C明D點和AB的中點E到P點和C點的距離相等,所以排除B和C選項。滿足的點在PC的中垂面上,PC的中垂面與ABCD的交線是直線,從而選A。
11、解:以的平分線所在直線為軸,建立坐標系,設,則則、、,
所以
,故當且僅當,即為正三角形時, 故選B
12、則,
,
故則的最小值為,故選答案。
二、填空題
13、。
14、利用正弦定理可將已知等式變?yōu)?sub>即,
,
當時,有最大值
15、。
16、。畫圖分析得球在二面角內的那一部分的體積是球的體積的,所以。
三、解答題:
17、解:
(1)由得或
在上是增函數(shù),
可額可得
18、(1)如圖建立空間直角坐標系,則
設
分別為的重心,,
,即
(2)(i)平面,
,平面的法向量為,
平面的法向量為
故,即二面角的大小為
(ii)設平面的法向量,
,由解得
又,點到平面的距離為
18、解:(I)抽取的球的標號可能為1,2,3,4
則分別為0,1,2,3:分別為
因此的所有取值為0,1,2,3,4,5
當時,可取最大值5,此時
(Ⅱ)當時,的所有取值為(1,2),此時;
當時,的所有取值為(1,1),(1,3),(2,2),此時
當時,的所有取值為(1,4),(2,1),(2,3),(3,2)此時
當時,的所有取值為(2,4),(3,1),(3,3),(4,2)此時
當時,的所有取值為(3,4),(4,1),(4,3),此時
故的分布列為:
0
1
2
3
4
5
。
20解:(1)
故。
(Ⅱ)由(I)知
令則。當時,;
當時,
(Ⅲ),
①-②得
令則
。
則。
而 。
21、(I)解:依題設得橢圓的方程為,
直線的方程分別為
如圖,設其中,
且滿足方程故①
由知得
由在上知得。
所以,化簡得,
解得或。
(Ⅱ)解法一:根據(jù)點到直線的距離公式和①式知,點,到的距離分別為
,
又,所以四邊形的面積為
,
當即當時,上式取等號,所以的最大值為2。
解法二:由題設,,
設由①得,
故四邊形的面積為+=
當時,上式取等號,所以的最大值為
22、解:(I)由題設可得
函數(shù)在上是增函數(shù),
當時,不等式即恒成立。
當時,的最大值為1,則實數(shù)的取值范圍是;
(Ⅱ)當時,
當時,,于是 在上單調遞減;
當時,,于是在上單調遞增。
又
綜上所述,當時,函數(shù)在上的最小值為,當時,
函數(shù)在上的最大值為
(Ⅲ)當時,由(Ⅰ)知在上是增函數(shù)
對于任意的正整數(shù),有,則
即,。
。
而則成立,
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com